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GENERAL INTRODUCTION 

Lubrication has become an Important topic of study In recent years 

as technological advances have moved toward smaller components with very 

stringent compositional requirements. With this move toward smaller and 

more well-characterized components, the need for very thin and uniform 

coats of lubricants has become more important. As a result of this 

rapidly advancing technology, research has been undertaken In many areas, 

from bench-top ellipsometry to ultra-high vacuum (UHV) surface science, 

to characterize the properties of lubricants and their interactions with 

surfaces. One class of lubricants that is commercially important is 

perfluoropolyether (PFPE) lubricants. These lubricants are widely used 

particularly In the computer and aerospace industries due to their high 

thermal stability and their low volatility. 

Let us consider a few examples of current research in the computer 

disk industry to illustrate the wide variety of techniques and approaches 

being used to advance the understanding of lubrication. It Is necessary 

to apply a thin layer (typically 3-5 nm) of lubricant to computer disk 

surfaces to prevent direct contact between the disk and the head which 

can result in what we commonly term "disk crashes". Perfluoropolyether 

lubricants are often used In this application. The thickness of the 

lubricant must be carefully controlled for optimum performance. If the 

lubricant Is too thick, an increase in stiction is observed during start­

up. This results in mechanical failure at the head/disk Interface. On 

the other hand, if the lubricant layer is too thin, insufficient 
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protection of the head/disk Interface is provided. Techniques for 

measuring the lubricant thickness are readily available and currently in 

routine use Industrially. Commonly used analysis techniques are X-ray 

photoelectron spectroscopy (XPS), Fourier-transform infra-red 

spectroscopy, radioactive tracer techniques, and ellipsometry. 

Ellipsometry is by far the easiest of these techniques to use because It 

is a bench-top technique. However, no methods are currently in use 

industrially to measure the lubricant thickness in situ. This is 

important since the lubricant layer spreads out and thins as the disk 

rotates. But research in this area is on-going (1). 

As technology improves, these lubricant layers will undoubtedly 

become thinner, and new and improved methods for characterizing the 

thickness will be required. Once these lubricants have been applied to 

computer disk surfaces, it is important to understand how they are held 

there and how readily they decompose. One group of investigators has 

chosen to approach the question of decomposition by studying the 

Interactions of perfluoroalkyl polyether oils with freshly cleaved 

stainless steel surfaces (2). In this study, they mechanically cleave 

the metal surface in UHV conditions in the presence of the oil and 

monitor the degree and the mechanism of decomposition of the oil using 

XPS and thermal desorption techniques. 

Another important aspect in the lubrication of computer disk 

surfaces is the effect of contaminants on the surface-lubricant 

interactions. In particular, there is a great deal of Interest in the 

effects of water contamination (humidity) on the performance of the 
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lubricant. One bench-top study on this particular problem Involves 

coadsorbing the lubricant and water on a disk surface and studying the 

effects of the water on the lubricant layer using optical microscopy (1). 

The Intent of the research in this dissertation is to advance the 

understanding of the surface-lubricant bonding of perfluoropolyethers and 

the effects of humidity on this bonding. We have chosen to approach this 

problem by studying the interactions of perfluorodiethyl ether with a 

single-crystal Ru(lOO) surface. We believe that perfluorodiethyl ether 

is a good model of the back-bone structure of perfluoropolyether 

lubricants. Unfortunately, the polymeric ethers do not have a 

sufficiently high vapor pressure for the types of experiments we have 

undertaken. We hope to gain an understanding of the effects of surface 

morphology on this system by comparing the results obtained on the row-

and-trough Ru(lOO) surface with results available on the hexagonally 

close-packed Ru(OOl) surface. Finally, we have studied the Interactions 

of perfluorodiethyl ether coadsorbed with water in order to gain an 

understanding of the molecular-level interactions between these two Lewis 

bases. 

We have chosen to use UHV techniques to study these systems. In 

particular, we have primarily used thermal desorption spectroscopy (TDS) 

to measure the bond strength of the ether on the surface and to observe 

the competition between the water and the ether on the surface. We have 

also characterized the interactions of the water on the surface using 

electron energy loss spectroscopy. 
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Explanation of Dissertation Format 

This dissertation Is arranged according to the alternate style 

format. Three papers are Included. Paper I, "Adsorption of Water on 

Ru(lOO)", appears In volume 218 of Surface Science on pages 346-362, 

1989. This paper Is co-authored by Davis, Dyer and Thiel. Davis helped 

with the electron energy loss experiments, and Dyer helped with the 

thermal desorptlon experiments which are reported In this paper. Paper 

II Is entitled "The Interactions of Hydrogen and Oxygen with Water on 

Ru(lOO): A thermal Desorptlon Study". Paper III, "The Interaction of a 

FluorInated Ether with a Metal Surface: Effects of Surface Morphology 

and Water Coadsorptlon" Is In press In the Journal of Vacuum Science and 

Technology A, 1990. 
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PAPER I. 

ADSORPTION OF WATER ON RU(IOO) 
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Adsorption of Water on Ru(lOO) 
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ABSTRACT 

We have Investigated the adsorption of water on Ru(lOO) using 

electron energy loss spectroscopy and thermal desorption spectroscopy. 

On this row-and-trough substrate, there Is a single desorption state 

associated with the chemisorbed layer, which shifts down from 240 to 

180 K as coverage Increases. There is no isotope effect, i.e., 

desorption spectra of HjO are the same as those of DgO, within 

experimental error. Less than 0.1 monolayers of HgO dissociate, and 

exchange between chemisorbed hydrogen and DgO is not measurable. Pre-

adsorbed oxygen and hydrogen cause distinctive changes in the shapes of 

the water desorption peaks on Ru(lOO). Electron energy loss spectroscopy 

indicates that the extent of hydrogen-bonding increases as water coverage 

increases at 85 K. Upon annealing and desorption, most changes in the 

vibrational spectra can be attributed to decreasing coverage, with the 

exception of some changes in the low-frequency modes. Comparison with 

previous studies of the hexagonally-close-packed Ru(OOl) surface reveals 

that surface morphology plays a major role in determining the properties 

of water adlayers on ruthenium surfaces. 
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INTRODUCTION 

The interaction of water with Ru(OOl) has been studied extensively, 

using a wide variety of techniques (i-g). This surface appears to be 

unusual in its ability to stabilize hydrogen-bonded networks of water 

molecules to high temperatures, giving rise to a distinctive high-

temperature state in thermal desorption spectroscopy (TDS) at about 220 K 

(1-Ô). The stability of the water clusters is thought to result from the 

very good lattice match between the atomically-smooth, hexagonal Ru(OOl) 

surface and bulk ice, which allows the water molecules to bond to the 

metal surface in favorable lattice sites, while simultaneously forming 

hydrogen-bonded clusters with little strain. Electron energy loss 

spectroscopy (EELS) has shown that two sharp and distinctive loss 

features due to librational modes, at 690-730 and 920-980 cm'\ are 

associated with the hydrogen-bonded clusters on the (001) face. 

An isotope effect has been observed in the thermal desorption of 

water. This effect - suppression of the high-temperature desorption 

state for DgO - is attributed to conversion from large hydrogen-bonded 

aggregates at high coverages, to smaller, more stable clusters as 

coverage falls. Conversion is slower for the heavier isotope because the 

molecular motions necessary for rearrangement of the hydrogen-bonded 

aggregates are slower (6). 

Thus, both the isotope effect and the unusual high-temperature 

desorption state are thought to be rooted in the particular structures of 

the water layer which are favored by the Ru(OOl) substrate morphology, 
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rather than by any particular chemical properties of Ru metal. However, 

this hypothesis has been untested, since no data have been reported for a 

Ru surface with different morphology, and so no comparisons could be 

drawn. We have therefore studied the adsorption of HgO and DjO on the 

atomically-rough Ru(lOO) surface. This surface is arranged in rows and 

troughs, much like an fcc(llO) surface, and the clean surface is 

reportedly stable against reconstruction (S, 1Û). Its atomic arrangement 

is shown in Fig. 1. While an ice-like lattice can still form on such a 

surface (H, 12), the distortion from bulk ice would be considerably 

greater than that required on the (001) plane of Ru. This strain might 

be reflected in a lower stability of molecularly adsorbed water, if 

indeed surface morphology were a determining factor. 

A second important factor comes into play when comparing the 

chemistry of water on these two ruthenium surfaces: the possibility that 

water may be more prone to dissociate on the rougher surface. There is 

little or no dissociation on the smooth (001) face [<0.05 monolayers (1-

4)]. However, ruthenium is a metal for which bulk thermodynamic 

parameters do not predict a strong driving force, either for dissociative 

or non-dissociative adsorption of water (U). It thus belongs to a 

category of "borderline elements" (13), in which factors such as surface 

roughness may favor dissociation. Indeed, other "borderline" elements 

such as Ni, Co, and Re exhibit more tendency to adsorb water 

dissociatively when the surface is rougher (13 and references therein). 

The purpose of this paper is twofold: to compare the desorption 

states of molecular water on the (100) and (001) Ru faces, and to 
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Figure 1. Arrangements of atoms, in and below, Ru(lOO) and (010) 
crystallographic planes 

Both are row-and-trough arrangements, but the positions of 
atoms in the troughs differ. If a surface is nominally cut to 
the (100) plane, or the (010) plane, and if it contains a 
series of equally-spaced, or randomly-spaced, monatomic steps, 
then each arrangement shown is exposed equally. Presumably, 
surface free energies favor one over the other, but 
experimental data to this effect are unavailable. For 
brevity, we refer to the surface of our crystal as "(100)" in 
the text. 
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Investigate the extent of dissociation on the (100) face. We find that, 

on the (100) face, there is a single desorption state which shifts down 

in temperature by 60 K as coverage increases, in contrast to the (001). 

There is no Isotope effect in thermal desorption from Ru(lOO). There is 

little dissociation (less than 0.1 monolayer of HgO) on the (100) 

surface. In addition, we show that oxygen and hydrogen strongly affect 

the shapes of the water desorption peaks on Ru(lOO). The differences 

between Ru(OOl) and (100), with respect to water chemisorption, are also 

reflected in the vibrational spectra of the adlayers. 
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EXPERIMENTAL DESCRIPTION 

The experiments are performed In a stainless steel ultra-high vacuum 

chamber with a base pressure of ca. 1x10'^" torr. A typical base pressure 

during experiments is 2x10'^" Torr. The chamber is equipped with a 

quadrupole mass spectrometer, an electron energy loss spectrometer 

(EELS), and a single-pass cylindrical mirror analyzer (CMA) for Auger 

electron spectroscopy. There is also an ion gun for sample cleaning and 

a directional, effusive, molecular beam gas doser. The Ru(lOO) sample is 

cut from a single-crystal boule purchased from Materials Research 

Corporation. The sample, about 1 cm^ in area, is cut and oriented to 

within one degree of the (100) face on both sides. The initial crystal 

cleaning involves a series of cycles consisting of argon ion bombardment, 

oxidation cycling, and high temperature annealing in vacuum to remove 

both silicon and oxygen until they are no longer detectable by Auger 

electron spectroscopy (AES). In addition, high concentrations of surface 

silicon are depleted by holding the sample at 700 K in 5 x 10'° Torr Hg 

for ca. 20 minutes. The extent of carbon contamination is monitored by 

exposing the surface to oxygen and recording the corresponding CO thermal 

desorption trace. When CO can no longer be detected by this procedure, 

the sample is annealed to 1630 K for 2 minutes and checked for complete 

oxygen removal with AES. The sample is heated resistively by two 0.020 

inch Ta wires which are spotwelded to the sides. These same wires are 

attached to electrical feedthroughs in a liquid-nitrogen-cool able 

coldfinger (M). The sample can be cooled from 1600 to 80 K in about 
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five minutes. The sample temperature Is measured with a thermocouple, 

95% W-5% Re vs. 74% W-26% Re, spotwelded to the edge of the crystal. 

The HgO used in this study is obtained in-house. It is distilled, 

delonized twice on HVOH' columns, passed over an organic exchange column 

to remove amine residues, and finally filtered for biological impurities. 

The DgO, purchased from Norrell, Inc., is specified as 99.9% pure. After 

exchange in the dosing line, the DgO used In the experiments is about 80% 

isotopically pure. Both the HgO and DjO are cycled through a series of 

freeze-pump-thaw cycles on the manifold to remove dissolved gases. Both 

are introduced into the UHV chamber via an all-metal doser with two 

apertures in series: a 2 /i conductance-limiting aperture followed by a 

0.5 mm directional aperture. Exposures, 6, are reported in units of 

Torr-s, corresponding to pressure behind the 2 fi aperture multiplied by 

dosing time. Based on comparison between HgO exposures obtained with the 

doser and exposures obtained by backfilling the chamber with HgO, an 

exposure of 900 Torr-s through the doser corresponds to approximately 1 

Langmuir. 

The sample is cleaned between experiments by annealing to 1630 K for 

2 minutes. There is no detectable oxygen signal in AES when this 

cleaning procedure is used. 

The thermal desorption spectra are recorded using a UTI lOOC 

quadrupole mass spectrometer located about 2.5 cm from the sample. The 

ionizer of the mass spectrometer is modified, after Johnson (15), to 

reduce the number of electrons which reach the sample surface. This 

modification reduces the electron current at the -1 cm^ sample from 10"® 
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to 10'^^ amps, thereby minimizing electron-stimulated desorptlon and 

dissociation. The temperature ramp Is controlled by a feedback circuit 

(ii) to obtain a heating rate of 10 K/s. The mass spectrometer and the 

temperature controller are both Interfaced to an IBM-AT computer. This 

arrangement provides rapid multi-mass analysis during the temperature 

ramp. 

The electron energy loss spectrometer Is purchased from McAllister 

Technologies. It Is a 127* sector design In a "double-C" configuration. 

In some situations, EELS data are acquired after heating the sample to 

elevated temperature (at a heating rate of 10 K/s), then cooling the 

sample back to T < 100 K. 
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EXPERIMENTAL RESULTS 

Thermal Desorption 

Thermal desorption spectra are shown in Fig. 2, for a wide range of 

initial exposures of HjO and DgO. Within experimental error, the spectra 

are identical for the two isotopes, at all exposures. At g < 1500 

Torr-s, a single state (denoted "A") is visible, and at higher exposures 

a second state (denoted "C") develops. The A-state has two possible 

sources: (1) molecular water which is perturbed, relative to bulk ice, 

by its proximity to the metal surface; or (2) water which dissociates, 

but recombines to desorb in the A-state. For the reasons summarized in 

the discussion section, we believe that the first source predominates in 

the A-state. No desorption states of water are observed at T > 250 K. 

The peak temperature of the A-state is shown as a function of 

exposure by the open circles in Fig. 3. These values are reproducible 

within about ±5 K, as shown by the error bar. The data of Figs. 2 and 3 

show that the peak temperature of the A-state falls from ca. 240 to 180 K 

as coverage increases, with the majority of the drop occurring at 

exposures below 500 Torr-s. This range of peak temperature encompasses 

the full range of the two states (A, and Aj) of chemisorbed water on 

Ru(OOl), ca. 180 to 220 K (1-7). The C-state (not represented in Fig. 3) 

first appears at 160 K and increases in temperature with increasing 

exposure. This increase is in accord with the characteristics of zero-

order desorption, i.e., of sublimation of bulk ice. In the low-coverage 

limit, the peak temperature of the C-state is within 10 K of that found 
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Figure 2. Thermal desorption spectra of HjO and DgO on Ru(lOO), 
following adsorption at 80 K 

The heating rate is 10 K/s. The curves are labelled with 
values of the relative peak area, 6', and exposure, £. A 
value of 0' - 1.0 is arbitrarily chosen at c = 1500 Torr-s, 
where the C-state begins to appear. 
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Figure 2 (Continued) 
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Figure 3. Peak temperatures in thermal desorption spectra of water 

Open circles: HgO peak following HjO adsorption. Only the A 
state is shown. The data are taken from Fig. 2. Stars; HgO 
peak following oxygen + HgO coadsorption. The data are taken 
from Fig. 6. Crosses: DgO peak following + DgO 
coadsorption. The data are taken from Fig. 6. Pluses: 
peak following DgO adsorption. The data are taken from 
Fig. 2. 
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for the multilayer state on Ru(OOl) in many other laboratories (1-Z)» 

indicating that the multilayer is little perturbed by the metal 

structure. 

The relative peak area, 9', of H^O or O^O, is shown as a function of 

exposure in Fig. 4. [We define 0' • 1 as the point where the multilayer 

first appears, which is at e - 1500 Torr-s in Fig. 2.] Above 100 Torr-s, 

(6' > 0.05), the data can be fit by a single straight line, with a 

correlation coefficient of 0.99. This indicates that the sticking 

coefficient (S) and the amount of dissociation are both coverage-

invariant (to within at least 20%) for 0' > 0.05. The straight-line 

construction does not intersect the origin, indicating that most of the 

adsorbed water dissociates irreversibly at exposures below about 100 

Torr-s (0' < 0.05). 

The extent of irreversible dissociation is also reflected by the 

amount of Hg evolved during the desorption ramp. As shown in Fig. 5, HgO 

adsorption results in two desorption features for Hg, one centered at 

170-195 K and one at 350 K. The former is probably due to desorption of 

HgO followed by fragmentation in the ionizer of the mass spectrometer. 

We believe that the latter desorption state arises from dissociation of 

water and recombination of atomic hydrogen. The maximum integrated peak 

area of the 350 K state is approximately four times that of a background 

experiment (where the sample is held for the same time in vacuum prior to 

desorption), and is only 10% of the peak area of a saturation coverage of 

hydrogen on this surface. Because there is no information available 

regarding the absolute coverage of hydrogen at saturation on Ru(lOO), we 
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Figure 4. Relative peak area, 0', as a function of exposure for H^O and 
DgO at 80 K 
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Figure 5. Thermal desorption spectra of Hg, following exposure to HgO at 
80 K 

The curves are labelled with values of the water exposure, c. 
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assume that its value lies between 1 and 2 ,  i.e., that it lies somewhere 

in the range of values commonly reported for other transition metal 

surfaces (e.g., ll-ZQ). Then the maximum amount of hydrogen which 

desorbs following water adsorption is between 0.1 and 0.2 monolayer of 

hydrogen, or between 0.05 and 0.1 monolayer of water. (We define one 

monolayer as one adsorbed particle per surface Ru atom, i.e., 9.6 x 10^* 

particles cm'^.) We are unable to detect isotopic exchange between 

co-adsorbed DgO and Hg, presumably because the amount of dissociation is 

so small. 

Finally, the data of Fig. 6 indicate that the thermal desorption 

peak shape of water itself can be used as a test for gross amounts of co-

adsorbed hydrogen or oxygen. Figure 6 shows thermal desorption spectra 

of water on a surface which is pre-treated with 2 L hydrogen or 0.5 L 

oxygen. The water desorption peak positions for these two sets of 

experiments are shown as a function of water exposure in Fig. 3. The 

coadsorbed hydrogen and oxygen exert two noteworthy effects on the water 

peak. First, at 50 and 100 Torr-s exposures of water, coadsorbed oxygen 

pushes the peak up close to room temperature, an increase of 50 to 65 K 

over the same exposure range in the absence of oxygen. Second, both 

hydrogen and oxygen change the shape of the peak at HgO exposures above 

1500 Torr-s. Comparison with data for this same exposure range in Fig. 2 

reveals that the ice multilayer is absent in Fig. 6, or else shifted up 

in temperature so that it merges indistinguishably with the A-state. We 

favor the latter possibility, since the integrated H20(D20) peak area 
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Figure 6. Thermal desorption of water (H^O or DgO) following exposure to 
Hj or Og 

(A) 2 L Hj; 

(B) 0.5 L O2 at 80 K. 
In (B), the oxygen-dosed surface is warmed to 345 K, to ensure 
dissociation, before exposure to water at 80 K. 
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Increases almost linearly with exposure, much as It does In Fig. 4. This 

Is Indicative of multilayer condensation. Finally, the data of Fig. 6 

Indicate that a large amount of hydrogen or oxygen Is not present In the 

spectra of Fig. 2. Otherwise, the spectra of Fig. 2 would not be so 

different from those of Fig. 6. Again, this Is consistent with the idea 

that the extent of dissociation of chemlsorbed water on the clean metal 

(as in Fig. 2) is quite small. 

Electron Energy Loss Spectroscopy 

Figure 7 shows EEL spectra obtained after four exposures of water on 

Ru(lOO) at 80 K. We assign the prominent features in these spectra 

largely by comparison with other vibrational studies of chemlsorbed water 

(11 and references therein). The positions and assignments of the loss 

features, following the same four exposures at 80 K, are summarized In 

Table 1. Several trends can be seen in the data of Fig. 7 and Table 1. 

First, the 0-H stretch shifts down by about 140 cm*^ as exposure 

(coverage) Increases, probably due to an increasing degree of hydrogen-

bonding. Second, the scissoring mode frequency shifts up by ca. 50 cm'^ 

as coverage increases. Its value at lowest coverage Is essentially 

identical to that of the free molecule (1595 cm'^), and Its final value 

is identical to that of bulk ice (1620-1640 cm'^). Again, this almost 

certainly reflects an increasing extent of hydrogen-bonding as coverage 

rises. Third, In the low-frequency region, a rather sharp, 560 cm'^-

feature is present after an exposure of 50 Torr-s. The assignment of 

this feature is discussed later. It is replaced by a broad feature at 
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Figure 7. Electron energy loss spectra following four different HgO 
exposures at 80 K 

In each frame, the spectrum is successively magnified, from 
left to right, as follows: 
50 Torr-s at Ix/lOOx/lOOOx; 1500 Torr-s at Ix/lOx/lOOx; 
900 Torr-s at lx/30x/300x; 3000 Torr-s at lx/30x/100x. 
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Table 1. Frequencies and assignments of loss features observed after 
Increasing exposures of water at 80 K 

Values of frequencies are quoted as x to within ± la, where 
each set of x (the mean) and a (the standard deviation) Is 
obtained from three to five repetitive experiments. 

£, Torr-s 

50 900 1500 3000 

(i) Uo-o 190±10 

(ii) UM-ocHg) 560±40 

(111) 715±45 735 775±20 

(1v) 6„ûh 1590±20 1615±10 1625 1640±20 

(V) UQH 3515±50 3415145 3400 3375±35 
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715 to 775 cm'^ at higher coverage. The higher-coverage mode arises from 

librations (frustrated rotations). Fourth, in the low-frequency region, 

the oxygen-oxygen stretch of the ice lattice is visible at 190 cm'\ 

after ice multilayers are well populated. 

Figure 8 illustrates two sequences of EEL spectra taken after 

successive heating of water-covered surfaces. The frequencies 

corresponding to the peaks in these spectra are included in Table 2. The 

changes in the spectral features above 1000 cm'^ can all be attributed to 

HgO desorption and decreasing coverage as the surface is heated. In 

contrast, the librational mode at 715 to 775 cm'^ shifts to 830-840 cm"' 

when the temperature is raised. Also, a new feature at 345 cm*^ becomes 

apparent after heating to 160 K (see Fig. 88). This is close to the 

position of the metal-water frustrated translation observed on Ru(OOl) at 

390 to 400 cm"^ (2, 4). We thus assign the 345 cm"' peak similarly. 

These latter two observations cannot be simply attributed to decreasing 

water coverage as the temperature rises. 

The rather sharp loss feature at 555-590 cm"' deserves discussion. 

In other HjO/transition metal systems, EEL features in this region have 

been attributed to librational modes of chemisorbed water, or to metal-

oxygen stretching vibrations of chemisorbed water, hydroxy!, or atomic 

oxygen (il and references therein). In Fig. 8A, the peak is not readily 

apparent at 80 K but may be masked by the broad librational feature at 

715 cm'\ The 585 cm"' peak emerges when the water-covered surface is 

heated to 185 K, and persists even after the sample is heated to 400 K 

and all other loss features have disappeared. In the 400 K spectra of 
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Figure 8. Electron energy loss spectra after 80 K exposure to two 
different HgO coverages and successive annealing 

For the corresponding desorption traces, see Fig. 2. The 
assignments and positions of the loss features are given in 
Table 2. Each spectrum is magnified, from left to right, as 
follows; 
(A) - 80 K at lx/30x/300x; (B) - 80 K at lx/30x; 

I85K at lx/100x/300x; 160K at lx/30x/100x; 
395K at lx/100x/300x 400K at lx/300x/1000x. 
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Table 2. Frequencies and assignments of loss features observed when a water covered surface Is 
heated, following two different HgO exposures at 80 K 

Heating is accompanied by desorption, as indicated. Frequencies are quoted as x ± la, 
where each set of x and a Is obtained from two experiments. 

6 = 900 Torr-s c = 3000 Torr-s 

80 K 145 K 
(onset of 
desorption 
in C-state) 

185 K 
(desorption 
peak maximum 
of A state) 

395 K 
(desorption 
complete) 

80 K 160 K 
(onset of 
desorption 
in C-state) 

400 K 
(desorption 
complete) 

(i) fo-o 190±10 

(ii) "h-ocHJ) 585 590±5 345110 555110 

(iii) &iib 715±45 840±20 770±20 830115 

(iv) ̂ HOH 1615±10 161015 1575 1630±20 1575110 

(V) I/OH 3415±45 3460±15 3575 3345±35 3450115 
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Fig. 8, this feature undoubtedly represents the metal-oxygen stretch of 

atomic chetnisorbed oxygen, thus indicating that some of the molecular 

water completely dissociates upon heating. There is never evidence for 

the existence of adsorbed hydroxyl, which would typically produce a 

distinctive M-OH bending mode in the 930 - 1190 cm'^ region (12) in 

addition to the metal-oxygen stretching mode. 

A 560 cm'^ feature also appears after Iqm exposures of water to 

Ru(lOO) at 80 K (see 50 Torr-s spectrum of Fig. 7). This feature is 

virtually identical to the peak which remains after annealing the water-

covered surface to 400 K; thus, one possible interpretation is that it is 

due to the presence of oxygen adatoms. Furthermore, the 50 Torr-s 

spectrum of Fig. 7 includes features associated with molecular water, 

most notably the scissoring mode at 1590 cm'\ but lacks features in the 

930 to 1190 cm'^ region indicative of an adsorbed hydroxyl species. 

Therefore, if the foregoing assignment of the 560 cm'^ feature is 

correct, then some of the water molecules completely dissociate during 

the initial chemisorption of water on clean Ru(lOO) at 80 K, thus 

producing oxygen and hydrogen adatoms in addition to molecularly adsorbed 

water. The atomic hydrogen is presumably Invisible in our EEL spectra 

due to its low scattering cross section (22). 

Alternatively, the 560 cm'^ peak in Fig. 7 could be assigned to the 

metal-oxygen stretch and/or librational modes of molecularly chemisorbed 

water. Comparison with other systems does support such an assignment, 

since the metal-oxygen stretch varies from 390 to 660 cm'\ and the 

librational modes range from 530 to 835 cm"^ (13, and references 
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therein). For instance, the metal-water stretch is observed at 500 - 530 

cm'\ for low coverages of HgO on Rh(lll) (21), very similar to the 

circumstances under which we observe the 560 cm'^ peak. However, this 

assignment conflicts with our interpretation of the high-coverage EEL 

spectra, where the 345 cm'^ band is attributed to the metal-oxygen 

stretching vibration of chemisorbed HjO and the 700 cm'^ band is assigned 

to librations. The conflict between the low and high coverage 

assignments can be resolved if it is assumed that the frequency of one or 

both of these modes is strongly coverage-dependent on Ru(lOO). In other 

systems, it is known that librational modes can shift upward as much as 

200 cm'^ as coverage varies from small values up to the ice multilayer 

(e.g., Z). Although we cannot disprove this assignment, we are skeptical 

that the 560 cm'^ features at 80 K and 400 K could coincidentally bear 

such a close resemblance, yet arise from entirely different adsorbates. 

Rather, we favor assigning the 560 cm"^ feature to atomic oxygen under 

both conditions. 

In summary, the EELS data show that the extent of hydrogen-bonding 

increases as coverage increases at 80 K. When high coverages of water 

are annealed to 145-160 K, the librational feature shifts up to 830-

840 cm'\ an increase of at least 60 cm'\ and the metal-oxygen stretch of 

molecular water becomes evident at 345 cm'\ There is no evidence of 

adsorbed hydroxyl. When the water-covered surface is heated to 400 K, 

all of the EEL features of molecularly adsorbed water disappear, leaving 

only the metal-oxygen stretching vibration of atomic oxygen at 555-

585 cm'\ An identical feature is apparent following an exposure of 
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50 Torr-s at 80 K, suggesting that some water may dissociate completely 

to oxygen and hydrogen even at this low temperature. 
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DISCUSSION 

Dissociation 

The extent of dissociation on this surface 1s quite small. This 

statement rests upon four pieces of evidence: 

(1) We cannot detect Isotopic exchange between and DgO. 

(2) The shapes of the water thermal desorptlon peaks are affected 

quite strongly when atomic hydrogen or oxygen Is deliberately 

pre-adsorbed, as In Fig. 6. 

(3) The amount of hydrogen which desorbs, following adsorption of 

water, corresponds to an absolute coverage of 0.05 to 0.1 

monolayers of water. This is small relative to the probable 

saturation coverage of a chemisorbed water layer, 0.50 to 1.0 

monolayer. The latter numbers are obtained by assuming that 

the saturation coverage of water on Ru(lOO) is the same as that 

on Ni(110) (iâ, il) or on Cu(llO) (12), both of which are row-

and-trough surfaces similar to Ru(lOO). The saturation 

coverage on Cu(llO) is reportedly 1.0 (12), whereas that on 

Ni(110) is in question: Bange et al. report a value of 1.0 

(11), whereas Griffiths et al. report 0.50 (24). 

(4) The desorptlon yield of water as a function of coverage (Fig. 

4) also reflects dissociation. The data indicate that most of 

the adsorbed water dissociates irreversibly at exposures below 

ca. 100 Torr-s. In order to use this in a quantitative way, 

let us assume that the absolute amount of dissociation Is 
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constant above 100 Torr-s and that S is coverage-invariant. 

Then an exposure of 100 Torr-s corresponds to a coverage of 

0.03 or 0.07 monolayers, depending upon whether the absolute 

coverage is 0.50 or 1.0 when the multilayer (C) state first 

appears, at c > 1500 Torr-s. This value, 0.03 to 0.07, is 

comparable to the amount of dissociation derived from the 

maximum Hg desorption yield, 0.05 to 0.1 monolayers. 

We conclude, therefore, that the atomic roughness of this ruthenium 

surface does not act strongly to favor dissociation over molecular 

adsorption. The extent of dissociation is sufficiently low, in fact, 

that it may be attributed simply to the activity of surface defects. We 

estimate that <5% of the surface sites are defect sites, based on the 

quality of the crystal orientation. If dissociation occurs 

preferentially at defect sites, this would account for dissociation of 

ca. 0.05 monolayers, as observed. 

Finally, the EELS data do not show evidence for formation of 

adsorbed hydroxyl species, under any conditions. This may result simply 

because the amount of adsorbed hydroxyl is smaller than our detection 

limit. Alternatively, one possible interpretation of the low-coverage 

data is that some water dissociates to atomic oxygen and hydrogen even 

upon adsorption at 80 K. This would be unusual, since dissociation on 

other transition metal surfaces is an activated process, requiring 

temperatures of 150 to 200 K. Further, dissociation proceeds through an 

adsorbed hydroxyl species on these other surfaces (13 and references 

therein). 
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Desorptlon States 

We observe a single chemisorption state, the A-state, with a peak 

temperature which shifts down by 60 K as coverage Increases. Its range 

of values, 240 to 180 K, encompasses the full range of the iwa states (A^ 

and Aj) of chemisorbed water on Ru(OOl), ca. 180 to 220 K (1-2). Also, 

there Is no Isotope effect In desorptlon from the (100) surface. This 

contrasts the (001) face as well, leading us to conclude that surface 

morphology plays a very Important role In the desorptlon kinetics of H^O 

on Ru. 

Recombination of dissociation fragments contributes little to 

desorptlon In the A-state, based upon our Inability to detect Isotopic 

mixing between Hg and DgO. Rather, the high peak temperatures at low 

coverage probably represent a relatively strong Interaction between 

molecular water and the metal substrate. It Is well-established that 

water acts as an electron donor (Lewis base) In bonding to metal 

surfaces, and as such it may be particularly attracted to the acidic on-

top sites at the crests of the Ru(lOO) ridges. The peak temperature may 

decrease as coverage increases because the formation of a hydrogen-bonded 

network forces water molecules out of preferred adsorption sites, thus 

reducing the strength of the metal-water bond. In short, we propose that 

increasing hydrogen-bonding on this surface acts to destabilize the 

chemisorbed layer. The EELS data support the idea that the extent of 

hydrogen-bonding Increases as coverage Increases. 

It is also Interesting to compare the desorptlon spectra of Ru(lOO) 

with those of two other corrugated surfaces, Ni(110) and Cu(llO). 
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Ni(llO) exhibits a multiplicity of states (H, 24, 2S), two of which (A, 

and Ag) fall in the range of the A-state on Ru(lOO). However, the 

positions of these peaks are invariant with coverage. Cu(llO) exhibits a 

single chemisorption state of HgO, at 165-175, but it shifts upward with 

increasing coverage (12), an effect which is also attributed to 

increasing hydrogen-bonding. It appears that the desorption states of 

HgO on the atomically-corrugated, transition metal surfaces are very 

metal-specific, in contrast to the atomically-smooth, close-packed faces. 

In the latter case, a single chemisorption state at 170-190 K, which 

shifts slightly upward with Increasing coverage, is the norm. 

Vibrational Properties 

The energy loss features, and the ways in which they change with 

coverage, are generally similar to those which have been observed on 

other metal surfaces (H). On Ru(OOl), strong changes in the shapes and 

positions of the librational modes occur when the sample is annealed to 

ca. 165 K (2, 1). On the (100) surface, we observe less dramatic changes 

when the sample is annealed to comparable temperatures. As shown by 

Fig. 8 and Table 2, the librational mode shifts up by ca. 60 cm'\ and 

the metal-oxygen stretch of HgO becomes visible at 345 cm'\ Although 

these changes are somewhat similar to those found for Ru(OOl), the 

dramatic splitting of the librational feature into two sharp peaks is 

missing for Ru(lOO). Because these two sharp features are associated 

with particularly stable hydrogen-bonded clusters on the (001) face, we 

conclude that similar clusters cannot form on Ru (100). This is 
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consistent with the observation, from TDS, that water on Ru(lOO) becomes 

less stable against desorptlon with Increasing coverage. I.e., as 

hydrogen-bonding becomes more extensive. 
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CONCLUSIONS 

We have studied the Interaction of water with the (100) surface of 

Ru. We observe only a small amount of water decomposition on Ru(lOO), 

0.05-0.1 monolayers. Preadsorbed oxygen and hydrogen change the 

chemisorption peak shape drastically from that seen on the clean surface 

indicating that any decomposition must be a very small amount. Previous 

studies Indicate that a similar amount of decomposition occurs on Ru(OOl) 

(1). Therefore, the atomlcally-rough Ru(lOO) substrate is not more 

active than the smooth (001) surface for water dissociation. 

Desorption of water from the row-and-trough surface is quite 

dissimilar to that which has been previously observed from the 

hexagonally-close-packed Ru(OOl) surface. We observe only one 

chemisorption state in thermal desorption which shifts down in 

temperature from 240-180 K as coverage Increases. This temperature range 

encompasses the desorption temperatures of both of the chemisorption 

states observed on Ru(OOl). Our EELS data indicate that the extent of 

hydrogen-bonding Increases as coverage Increases on Ru(lOO). These data, 

combined with the thermal desorption data - which show a shift to lower 

desorption temperatures as coverage is increased - suggest that hydrogen-

bonding destabilizes chemisorption on this surface. This is in contrast 

to the situation on Ru(OOl). Hence, we conclude that surface morphology 

strongly affects the stability of water on Ru surfaces. 
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ABSTRACT 

We have investigated the Interactions of hydrogen and oxygen 

coadsorbed with water on Ru(lOO). Low exposures of water desorb from 

clean Ru(lOO) at 240 K and this peak temperature shifts to 180 K as 

exposure is increased. The multilayer appears at 160 K. Pre-adsorbed 

oxygen moves the low exposure HjO peak temperature up by as much as 65 K. 

Both coadsorbed hydrogen and oxygen force the peak temperature of the 

multilayer up in temperature to a point where it is no longer 

distinguishable from the monolayer chemisorption feature. Oxygen pre-

dose experiments indicate that oxygen exhibits its greatest influence on 

the desorption of water from Ru(lOO) at an exposure of 0.25 L. The 

results from the oxygen pre-dosed surface are compared to results on 

other metal surfaces including Ru(OOl). The effect of surface morphology 

Is discussed for this system. 
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INTRODUCTION 

The Interactions of water with metal surfaces have been studied 

extensively. The influence of coadsorbates on these systems has also 

been a topic of some interest. Previously, we have studied the 

interactions of water with Ru(lOO) (1). Water adsorbs primarily 

molecularly on this surface. One chemisorption feature is observed at 

240 K at low exposures. As exposure increases the peak temperature 

shifts down to 180 K, and at high exposures a second feature due to 

desorption from a water multilayer appears at 160 K. A small amount of 

dissociation is observed--5 to 10% of a monolayer. No isotope effect is 

observed in this system when DgO is adsorbed rather than HgO. 

In this paper we discuss the interactions of coadsorbed hydrogen 

with DjO and coadsorbed oxygen with HjO on the Ru(lOO) surface. The 

effects of coadsorbed hydrogen on the chemisorption of water on metal 

surfaces have not been studied extensively, but the interactions of 

coadsorbed oxygen with water have been a topic of some interest on 

various metal surfaces. Pre-dosed oxygen Induces dissociation of water 

on several metal surface which allow molecular adsorption when clean. 

Among these are Ag, Cu, Ni, Pt and Pd(£ and references therein). The 

presence of coadsorbed oxygen on these surfaces leads to formation of 

adsorbed OH species. These species generally recombine with adsorbed 

hydrogen and desorb at -250 K (1). This peak temperature compares to 

desorption temperatures of water from clean metal surfaces which 

generally occur below -200 K. Other high temperature desorption features 
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are also observed on oxygen pre-dosed surfaces which are due to 

desorptlon of molecular water. These peaks are usually observed below 

300 K under ultra-high vacuum conditions. 

Low coverages of oxygen appear to be more effective In Inducing the 

effects discussed above. The most intense features resulting from 

recombination and desorptlon of adsorbed OH species appear for oxygen 

pre-exposure values of -0.25 L (2, and references therein). This 

exposure corresponds to an oxygen coverage of approximately 1/8 

monolayer, indicating that one oxygen atom will influence the chemistry 

of several neighboring water molecules. Evidence of adsorbed oxygen 

atoms influencing the bonding of multiple water molecules is reported for 

many systems (1-2). Bange et al. report that 6-8 water molecules 

Interact with a single adsorbed oxygen atom on Cu(llO) (1). On this 

oxygen pre-dosed surface, five desorptlon features are observed, three of 

which are observed above the temperature at which molecular desorptlon 

occurs on the clean surface. The lower two of these are due to oxygen-

stabilized, tightly-bound molecular water. Furthermore, the feature 

representative of molecular desorptlon from the clean surface disappears 

above 0.25 L oxygen pre-exposure. 

The influence of preadsorbed oxygen on the desorptlon of water from 

Ru(OOl) is quite different from the systems discussed above. Preadsorbed 

oxygen does not Induce dissociation and formation of an adsorbed OH 

species on this surface (8, £). However, preadsorbed oxygen does force 

the adsorbed water molecules into their more tightly-bound state on this 

surface. Water desorbs from clean Ru(OOl) in two states, A1 and A2, 
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which are due to small and large hydrogen-bonded clusters on the surface, 

respectively. The A1 state appears at higher temperatures, and the 

presence of preadsorbed oxygen increases the population of this state as 

well as its temperature. A critical coverage of oxygen occurs at 0.5 L. 

At this point a maximum occurs in the conversion of water molecules from 

the A2 to the A1 state. Doering and Madey propose that the preadsorbed 

oxygen inhibits formation of the large hydrogen-bonded clusters (found in 

the A2 state) due to site-blocking effects (&). 

In this paper, we will discuss the results obtained for coadsorption 

of hydrogen and oxygen with water on Ru(lOO) in light of the discussion 

above. Interestingly, preadsorption of oxygen on Ru(lOO) does not 

closely resemble any of the systems presented above. 
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EXPERIMENTAL PROCEDURES 

The experimental apparatus and the Initial sample cleaning procedure 

have been discussed extensively elsewhere (1). In short, the stainless 

steel chamber has a base pressure of 1 X 10'^° Torr, and is equipped with 

a UTI lOOC mass spectrometer, a cylindrical mirror analyzer Auger 

spectrometer, an ion gun, and an effusive-flow gas doser. The oxygen and 

the hydrogen used in these experiments are purchased from Matheson Gas 

Co., and are specified as 99.6 and 99.99% pure, respectively. They are 

admitted to the chamber via variable leak valves. The water, admitted 

through the gas doser, has exposure units of Torr seconds corresponding 

to the product of pressure of water in Torr behind the conductance-

limiting aperture and the dose time. As a point of reference, a 900 

Torr-sec dose of HgO using this doser corresponds to approximately IL 

exposure achieved by backfilling the chamber. The HgO is obtained 1n-

house. The procedure used for its purification is described elsewhere 

(1). The DjO is also admitted via the gas doser. It is obtained from 

Norrell, Inc., and is specified as 99.9% pure. 

Between experiments, the sample is cleaned by a one-minute anneal to 

1650 K in vacuum, to remove adsorbed oxygen. After this procedure, no 

oxygen is observable in the Auger spectrum. ^ 

The sample is cooled to about 90 K prior to its exposure to water, 

DgO, or the coadsorbates. Following oxygen exposure, the sample is 

warmed to 340 K to Induce dissociation of the oxygen. A heating rate of 

approximately 10 K/sec Is used to induce desorption. Typically, masses 2 
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and 18 are monitored In the oxygen pre-dose experiments and either masses 

2, 3, 4 and 20 or 4, 18, 19 and 20 are monitored for the hydrogen 

coadsorption experiments. 

The DgO is only about 70% pure as It enters the chamber. 

Apparently, this Is a result of exchange with hydrogen on the walls of 

the gas manifold lines, since the DgO itself is much purer. The purity 

of the DgO prior to its entry into the gas manifold and chamber Is 

determined by proton nmr using the method of standard additions. The 

method of standard additions is actually used to determine the percent 

water in a freshly opened DgO standard. In this manner, the accuracy of 

the method can be determined. Figure lA is a standard additions plot of 

Integrated area under the proton nmr peak for a 1000 /il sample of a 

freshly opened bottle of DgO vs. fl^ HjO added. Analysis of this plot 

shows that there Is no HgO in the 1000 sample of DgO within the 

accuracy of this method. The fact that the linear fit of the data 

crosses the x-axIs on the positive side indicates that the amount of HgO 

in this DgO sample is actually negative! We know this can not be true, 

though, so we take this value as a measure of the uncertainty in the 

method. The linear fit of the data in Fig. lA intersects the y-axis at 

an area of -5.3. Plugging the corresponding positive value into the 

linear equation, we obtain a volume of 3.9 /il, which corresponds to an 

uncertainty in the method of 0.4%. Figure IB is a plot of percent HgO 

vs. area of the proton nmr peak for each of the standard addition 

samples. The area under the unknown DgO peak is indicated on the graph. 

This area corresponds to a DjO purity of 98.1 + 0.4%. 
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Fig. lA: /il HgO added vs. proton nmr peak area. 
Fig. IB: Percent HgO vs. proton nmr peak area. 
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EXPERIMENTAL RESULTS 

Hydrogen Coadsorptlon 

Thermal desorption results for DgO coadsorbed with 2 L hydrogen on 

Ru(lOO) are presented in Fig. 2. Hydrogen post-dose results are 

presented in Fig. 2A and hydrogen pre-dose results are plotted in Fig. 

2B. Notice that the multilayer peak is indistinguishable from the 

monolayer desorption feature in the pre-exposure data, but appears as a 

separate feature in the post-dose data at the same temperature as it does 

on clean Ru(lOO). There are no other significant differences between the 

hydrogen pre-dose and post-dose data. Note that the hydrogen post-dose 

data are essentially identical to the desorption results of water from 

clean Ru(lOO), indicating that the influence of this adsorbate on the 

water thermal desorption is minimal to nonexistent when it is adsorbed 

second. 

Oxygen Coadsorption 

The oxygen coadsorption results are considerably more complicated 

than those of the hydrogen coadsorption studies. Several differences are 

observed in the thermal desorption of water from Ru(lOO) due to the 

presence of an oxygen coadsorbate. The most noticeable effect is the 

increase in the desorption temperature of water at low exposures by as 

much as 65 K. This effect is presented in Fig. 3 where the peak 

temperature of the chemisorbed state is plotted vs. HjO exposure in Torr 

s for HjO, DgO, HjO with oxygen pre-exposure and DjO with hydrogen pre-
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dose and post-dose. Note that only the oxygen pre-dose Induces this 

effect. 

The thermal desorption results for water desorbing from Ru(lOO) with 

a 0.5 L oxygen pre-dose are presented in Fig. 4. The high exposure 

results are similar to those observed for the hydrogen pre-dose 

experiments--once again the multilayer state is forced up in temperature 

so that it is indistinguishable from the monolayer desorption feature. 

Another trend in these spectra is not as apparent upon initial 

Inspection. The full width at half maximum (FWHM) of the water feature 

appears to change in a reproducible fashion with changing water exposure. 

The FWHM Increases with decreasing exposure from 3000 to 1500 Torr s. 

From 1200 to 500 Torr s the FWHM appears to be constant, and below 300 

Torr s the FWHM decreases as the exposure is decreased. 

The FWHM is also dependent upon the oxygen pre-dose. For water 

exposures less than or equal to 900 Torr s (- 1 monolayer), the FWHM is 

greatest for oxygen pre-exposures of 0.1 and 0.25 L. The quarter 

Langmuir oxygen pre-dose appears to be an Important value in these 

experiments as it was on several metal surfaces in which oxygen Induced 

dissociation. Various oxygen pre-dose values were studied for water 

exposures of 300, 900 and 3000 Torr s. The Increase In the temperature 

of the multilayer feature is observed at all oxygen pre-dose values 

studied. For the 300 and 900 Torr s water exposures with 0.25 L Og pre-

dose, the FWHM is greatest. Figure 5 is a normalized plot of FWHM vs. 

oxygen pre-exposure for 300, 900, and 3000 Torr s exposures of water. 

The FWHM data were normalized at high oxygen coverages, so that they 
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Figure 4. Thermal desorption traces of water on 0.5 L oxygen pre-dosed 
Ru(lOO) 
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could all be displayed on the same graph. Above the 0.25 L oxygen pre-

dose value, the high temperature hydrogen feature which Is representative 

of the small amount of water dissociation which occurs on clean Ru(lOO) 

Is also no longer observed. However, no corresponding Increase in the 

area of the water feature is observed. (This may be a result of a lack 

of accuracy in measurement of peak areas, though.) For the 300 Torr s 

series, the 0.25 L oxygen pre-dose also results in the highest 

temperature desorption feature. 
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DISCUSSION 

High Water Exposures 

The following effects are observed due to coadsorptlon of hydrogen 

or oxygen with multilayer coverages of water on Ru(lOO): 

1) The presence of 2 L of pre-dosed hydrogen forces the 

temperature of the multilayer up so that It Is 

Indistinguishable from the monolayer feature. 

2) Reversing the adsorption order (i.e., adsorbing water 

first) eliminates this effect. 

3) The presence of 0.5 L of pre-dosed oxygen also forces the 

multilayer peak temperature of water up to a point where it is 

indistinguishable with the monolayer feature. 

4) Varying the coverage of pre-dosed oxygen from 0.1 to 4.0 L 

does nsi change the temperature of the observed desorption 

feature for greater than monolayer water exposures. 

5) Pre-exposures of 0.1-0.25 L oxygen result in the highest peak 

temperatures and the broadest FWHM values for water exposures less 

than one monolayer. Above 0.25 L oxygen pre-dose, hydrogen 

resulting from dissociation of water is no longer observed. 

The similarity in the effects of hydrogen and oxygen pre-exposures on the 

desorption of high coverages of water from Ru(lOO), lead one to believe 

that the mechanism for these effects is the same for the two 

coadsorbates. The difference between the desorption features for pre-

dosed and post-dosed hydrogen indicates that a site-blocking effect is 
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probably occurring here, similar to that observed by Doering and Madey 

for water on oxygen pre-dosed Ru(OOl). This effect apparently Is not due 

to thermodynamics since one would expect to see similar results upon 

reversing the adsorption order If this type of chemistry were involved. 

However, the fact that the temperature of the desorptlon feature observed 

for high water coverages does not change as the value of the oxygen pre-

dose Is varied. Introduces doubt Into the site-blocking model. 

Intuitively, one would predict that fewer water molecules would be 

affected due to site-blocking from oxygen if fewer oxygen atoms were 

present on the surface. The fact that this is not borne out 

experimentally is puzzling. One explanation that can be offered for this 

behavior is that one oxygen atom is influencing several water molecules, 

and that by a coverage of 0.1 L of oxygen the entire first monolayer of 

water is already affected, so no further effects will be observed as the 

oxygen pre-dose is Increased. This explanation is plausible since one 

oxygen atom is known to Influence the desorptlon characteristics of 

several water molecules from metal surfaces. It is interesting to note 

that this effect--shift1ng the multilayer temperature up due to the 

presence of hydrogen or oxygen coadsorbates--has not been observed 

previously. 

Low Water Exposures 

Coadsorbed hydrogen appears to have no effect on the thermal 

desorptlon of low exposures of water from Ru(lOO). Preadsorbed oxygen, 

on the other hand, has quite a strong effect on the desorptlon of small 



www.manaraa.com

62 

amounts of water from this surface. Interestingly, pre-dosed oxygen 

appears to have its greatest influence on the desorption of low exposures 

of water from Ru(lOO) when present at a value of 0.25 L. This oxygen 

coverage is the value that induces the greatest degree of adsorbed OH 

formation on metal surfaces which dissociate water under the influence of 

oxygen pre-exposure. But Ru is not one of these metals! Furthermore, 

oxygen appears to have its greatest effect on the desorption of water 

from RufOOl) when it is pre-dosed at a value of 0.5 L. For a 300 Torr s 

exposure of water on Ru(lOO), 0.25 L of oxygen causes the most broadening 

of the FWHM and it also forces the desorption peak up to a higher 

temperature than any other oxygen pre-dose value. Above this oxygen 

exposure value, the hydrogen desorption feature indicative of the small 

amount of water dissociation on clean Ru(lOO) also disappears. One could 

surmise that this difference in the amount of oxygen required for its 

maximum effect is related to the number of available surface sites for 

water adsorption of the Ru(lOO) vs. the Ru(OOl) surface. Perhaps the 

more open Ru(lOO) surface has fewer surface sites available for water 

molecules to bond in a first layer, or perhaps water molecules prefer to 

form multilayer-like islands of water on this surface since the lattice 

match between the Ru(lOO) surface and the icosahedral structure of ice is 

much poorer than the match with the Ru(OOl) surface making formation of 

long-range hydrogen-bonded clusters more difficult on Ru(lOO). If either 

of these conditions are true, a decrease in the value of pre-dosed oxygen 

required to have its greatest influence on the adsorbed water molecules 

on Ru(lOO) is expected. Another explanation for this difference in the 
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"critical" amount of oxygen pre-exposure for Ru(lOO) vs. Ru(OOl) is 

simply that exposures can not be compared exactly from one vacuum system 

another. This is due to the fact that ion gauge sensitivities vary by a 

factor of two, giving rise to exposure variations from system to system 

since exposure rests on pressure measured by the ion gauge. 

At very low water coverages (i.e., 50 Torr s), a 2 L oxygen pre­

exposure pushes the water desorption temperature up by as much as 65 K. 

This indicates that the presence of coadsorbed oxygen strongly stabilizes 

the structure of low coverages of water on Ru(lOO). This effect is 

similar to the effects of preadsorbed oxygen on the desorption of water 

from Cu(llO) reported by Bange et al. (4). They attribute this increased 

stabilization due to the presence of coadsorbed oxygen to a stable 

hydrogen-bonded structure in which pre-adsorbed oxygen plays a role. 

Although many models could be proposed on the basis of the oxygen 

and water coadsorption results presented here, we describe a model which 

is consistent with all aspects of our data, and with what is known for 

some similar systems where water and oxygen were coadsorbed. We propose 

that oxygen is inducing water decomposition to H and OH at low water 

exposures (i.e., 50-100 Torr s). This results in the observed high-

temperature desorption feature for water which is due to recombinative 

desorption. This assignment is in agreement with the general observation 

that water features desorbing above 250 K are due to recombination of H 

and OH (2). As water exposure is increased, we suggest that this 

reaction no longer occurs, but rather a stable hydrogen-bonded structure 

forms perhaps with oxygen acting as a "bridge" over the troughs of the 
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Ru(lOO) surface. This stable hydrogen-bonded structure containing water 

is similar to what Bange et al. propsed on Cu(llO). Apparently, in this 

hydrogen-bonded structure, one oxygen atom will influence several water 

molecules, and there is a critical coverage at 0.25 L where oxygen is 

influencing as many water molecules as it can. Above this oxygen 

coverage, surface crowding evidently becomes a problem. As water 

coverage is further increased, this stable hydrogen-bonded structure is 

presumably prevented from forming, perhaps due to surface crowding again. 

The result is that the desorption temperature of the monolayer feature 

decreases rapidly just as we observed on clean Ru(lOO). This rapid 

decrease in peak temperature is correlated to an increase in hydrogen-

bonding on the clean surface based on comparison of the electron energy 

loss and the thermal desorption data. We propose that this hydrogen-

bonded structure is less stable than the structure that forms for low 

water coverages in the presence of oxygen. 

It appears to be a coincidence that the hydrogen resulting from 

water dissociation disappears at the "critical" oxygen coverage of 

0.25 L. We propose that the disappearance of this peak is simply due to 

recombination with the preadsorbed oxygen on the surface. It is 

interesting that this recombinative desorption of water does not present 

itself as a separate high-temperature feature. However, we expect that 

this feature would have very low intensity since only 5-10% of a 

monolayer of hydrogen Is observed due to water dissociation on clean 

Ru(lOO) (1). 



www.manaraa.com

65 

CONCLUSIONS 

We have studied the Interactions of preadsorbed hydrogen and oxygen 

with water on Ru(lOO) using thermal desorptlon spectroscopy. We observe 

an Increase in the temperature of the multilayer feature for water due to 

the presence of preadsorbed hydrogen or oxygen. If the adsorption order 

Is reversed in the hydrogen coadsorption experiment, this effect is not 

observed. Varying the amount of oxygen coadsorbed from 0.1 L to 4.0 L 

does not affect the degree of this shift. This shift in the temperature 

of the water multilayer due to the presence of hydrogen or oxygen 

coadsorbates has not been observed before to our knowledge. 

At low water coverages, hydrogen has no effect on the water 

desorptlon. However, the oxygen pushes the water desorptlon temperature 

up by as much as 65 K at low oxygen exposures. The oxygen also appears 

to have Its greatest effect on the water desorptlon at an exposure of 

-0.25 L. This is interesting since the "critical value" for oxygen pre-

dose on Ru(OOl) is 0.5 L, and since 0.25 L is the critical value for 

formation of OH on surfaces which are known to dissociate water in the 

presence of an oxygen pre-exposure. This difference in the critical pre-

dose of oxygen for the two Ru surfaces may arise from a difference in the 

number of surface sites available for water adsorption, the difference in 

their ability to stabilize hydrogen-bonded structures, or simply the 

difference in exposure values between ultra-high vacuum chambers. 

We have proposed a model which explains all of the experimental 

results for the oxygen coadsorption experiments, and which is also 
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consistent with results others have observed on similar systems. This 

model is certainly not the only model that could be proposed to explain 

the data available. More detailed experimental information is required 

to prove or disprove any models proposed. 
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PAPER III. 

THE INTERACTION OF A FLUORINATED ETHER WITH A METAL SURFACE 

EFFECTS OF SURFACE MORPHOLOGY AND WATER COADSORPTION 
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ABSTRACT 

We have Investigated the Interaction of perfluorodiethyl ether with 

Ru(lOO) using thermal desorptlon spectroscopy. The ether desorbs from 

the clean surface In three states: a multilayer at 120 K, and two 

additional states at 135 and 150 K. The latter states merge and move 

upward to 170 K as coverage Increases. The corresponding low-coverage 

desorptlon energies are 37 and 39 kJ/mol, comparable to a value 

previously observed in perfluorodiethyl ether desorptlon from Ru(OOl). 

There Is no detectable decomposition. We have also investigated the 

effect of water coadsorptlon. We find that water shifts both high-

temperature states of the ether downward, to 125 and 130 K, respectively. 

Again, there is no detectable decomposition. The weakening of the ether-

surface bond in the presence of water is discussed in terms of Lewis 

acid-base theory. Overall, we find that surface morphology does not 

strongly affect the ether-surface bond strength, but water coadsorptlon 

does. 
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INTRODUCTION 

Perf1uorinated polyethers such as Fomblln are commonly used as 

lubricants In the computer and aerospace Industries. Their Interaction 

with surfaces at a molecular level Is not well understood, however. The 

purpose of this study is to model the interactions between metal surfaces 

and common lubricants by Investigating the Interactions of one simple 

fluorinated ether with a single-crystal metal surface in ultra-high 

vacuum. We purposely introduce water in order to simulate the effect of 

high humidity on these interactions. 

Ethers are known to bond to transition metal surfaces via the lone 

pair electrons on the oxygen atom (1-i). The ethers donate electron 

density into the d-orbitals of the metal atoms. One expects that 

fluorination of the alkyl side chains may weaken this donation, since the 

electronegative fluorine atoms pull electron density away from the oxygen 

atom. In terms of Lewis acid-base theory, fluorination may weaken the 

Lewis basicity of the ether and thereby its adsorption bond strength. 

This expectation has been borne out by previous comparisons of 

fluorinated and hydrogenated ethers on Ru(OOl) in our laboratory (5-8). 

Often, decomposition trends within a class of molecules can be used 

to predict the stability of particular molecules upon modification. 

Ethers, for instance, can be considered as modified alcohols, and the 

decomposition of alcohols at transition metal surfaces is fairly 

predictable. Most often an alkoxy species is formed, the stability of 

which appears to depend upon the stability of adsorbed CO, a major 
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decomposition product. Carbon monoxide forms a strong adsorption bond 

with surfaces such as Pd, N1, Ru and W (g and references therein). On 

these surfaces, alkoxy species are either not observed, or decompose 

below room temperature. However, on surfaces such as Cu and Ag, where CO 

is only weakly chemisorbed, the alkoxy species predominate to 

temperatures as high as 420 K (i and references therein). There is much 

less information available regarding the decomposition of ethers at 

transition metal surfaces. Rendu!ic and Sexton have studied the 

adsorption of C^-C, ethers on Pt(lll) (i). They propose that these 

ethers form a first layer, distinguishable from the multilayer, and that 

90% of this first layer desorbs molecularly. The decomposition pathway 

they propose for the remaining fraction involves a mechanism in which CO 

is formed, either in combination with adsorbed carbon and hydrogen or 

with alkane or unsaturated hydrocarbon fragments. This mechanism 

requires C-C bond scission and C-0 bond scission. Basu and co-workers 

have studied the adsorption and decomposition of (CF2H)20 on an AlgO^ 

surface (1Û). They observe C-F and C-0 bond scission to form a surface 

formate species. Also from this group, Chen et al. have studied the 

decomposition of dimethyl ether on high-area alumina surfaces containing 

hydroxy! groups (3). They observe a surface methoxy species formed by 

C-0 bond breaking. 

It is difficult to predict the effect of fluorinatlon on the degree 

of decomposition of the ethers since there is no clear decomposition 

pathway. However, it is clear that the C-0 bond must be broken. One 

might guess that the fluorine atoms deplete electron density from the 
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molecule and thereby weaken the C-0 bond, making It more prone to bond-

breaking. This leads to the conclusion that decomposition may occur more 

easily for the fluorinated molecules. But the C-F bond is significantly 

stronger than the C-H bond [440 kJ/mol for C-F in CjF^ (H) vs. 410 

kJ/mol for C-H in CjH^ (11)]» so decomposition of the fluorinated ethers 

may be more difficult if C-F/C-H bond breaking is required. These 

competing effects make it difficult to predict the degree of 

decomposition for the fluorinated ethers. 

The difference in the C-0 bond strength for the fluorinated versus 

the hydrogenated ethers can be estimated by comparing the frequency of 

the C-0 stretch in the ir spectra of these molecules. The gas-phase ir 

spectrum of perfluorodiethyl ether is shown in Fig. 1. This spectrum was 

acquired on an IBM IR-98 FTIR spectrometer. The background gas spectrum 

was subtracted from the ether spectrum, so the only bands appearing in 

this spectrum arise from vibrational stretches of perfluorodiethyl ether. 

The ir spectrum of perfluorodiethyl ether has been published previously, 

however, band assignments were not made (13). This is undoubtedly due 

to the fact that the bands in the region of the C-0 stretch are extremely 

difficult to assign because the C-F stretches which also appear in the 

1100-1300 cm"^ region of the spectrum are very unpredictable (13). There 

is little predictability in these stretches even within an homologous 

series of fluorocarbons. However, after much consideration and 

discussion with an expert in the field of fluorocarbon ir, we have 

decided to assign the 1108 cm'^ band to the C-0 stretch of 

perfluorodiethyl ether (14). Assuming this assignment is correct, this 
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Figure 1. Infra-red spectrum of perfluorodiethyl ether 
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indicates that the C-0 bond of perfluorodiethyl ether is slightly weaker 

than that of its hydrogenated analog. The C-0 stretch of diethyl ether 

appears at 1120 cm'^ (IS). This weakening of the C-0 bond supports the 

supposition that fluorination pulls electron density away from this 

portion of the molecule, thereby weakening this bond as well as the 

ether-surface bond. 

Previously, we have studied the interaction of several small 

oxygenated fluorocarbons, mainly ethers and ketones, with the atomically-

smooth Ru(OOl) surface (5-g). In general, the fluorinated molecules form 

weaker bonds at the surface than their hydrogenated analogs, as 

predicted. We also observe significantly less decomposition of the 

fluorinated molecules in comparison to their hydrogenated analogs. In 

addition to the reason suggested above, this decrease in the degree of 

decomposition upon fluorination may be due to the fact that the 

fluorinated molecules desorb at lower temperatures than the hydrogenated 

ethers, and they may simply desorb before the temperatures required for 

bond scission can be reached. Finally, the bulkier fluorine atoms may 

sterically hinder the fluorinated molecules from approaching the surface 

closely enough to undergo the interactions necessary for dissociation. 

If steric hindrance is indeed an important factor which influences 

decomposition of the fluorinated molecules, perhaps changing from an 

atomically-smooth to an atomically-rough surface morphology can affect 

the degree of decomposition of this important class of molecules. A main 

purpose of this study is to observe the effect of surface morphology on 
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the adsorption strength and degree of decomposition of perfluorodlethyl 

ether on Ru. 

The Ru(lOO) surface Is a row-and-trough type of surface, as opposed 

to the hexagonal1y-c1ose-packed surface of Ru(OOl). The (100) surface is 

indistinguishable from the (010) surface by Laue X-ray techniques. 

Figure 2 is a representation of the Ru(lOO) and Ru(OlO) structures. Note 

that Ru(lOO) has a trough depth of 0.78 A and Ru(OlO) has a trough depth 

of 1.57 A. Presumably, surface-free-energy considerations favor one of 

these two surfaces over the other, but data to that effect are presently 

unavailable. For the duration of this manuscript, we refer to our 

surface as "Ru(lOO)", even though It is probably some combination of 

Ru(lOO) and Ru(OlO) faces, separated by single-atom steps. 

Water and perfluorodlethyl ether are both Lewis bases. Since the 

electron density in the ether is more delocallzed than in the compact 

water molecule, water is the harder of the two Lewis bases. One thus 

expects that these two molecules may compete for adsorption sites, and 

each may adversely affect bonding of the other. A second main objective 

of this paper is to investigate the Interaction between these two 

adsorbates, with the practical goal of beginning to understand how water 

contamination or humidity may influence performance of lubricants which 

are in contact with metals. 
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Figure 2. Representation of the atomic positions in and below the 
Ru(OlO) and Ru(lOO) planes 

Although both are row-and-trough surfaces, the trough depth is 
deeper for Ru(OlO). Presumably the real surface (which we 
refer to as "Ru(lOO)" for brevity) is actually a mixture of 
the two. 
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EXPERIMENTAL PROCEDURES 

The experimental apparatus, and the initial sample cleaning 

procedure, have been discussed extensively elsewhere {13). In short, the 

stainless steel chamber has a base pressure of 1 X 10'^° Torr, and is 

equipped with a UTI lOOC mass spectrometer, a cylindrical mirror analyzer 

Auger spectrometer, an ion gun, and an effusive-flow gas doser. The 

perfluorodiethyl ether used in these experiments, purchased from Strem 

Chemical Co., is specified as 98% pure. The ether is introduced to the 

chamber via the effusive flow gas doser. The units of exposure for the 

ether are Torr-s, corresponding to pressure In Torr behind the 

conductance limiting aperture times the dose time. As a point of 

reference, a 900 Torr-sec dose of water using this doser corresponds to 

approximately 1 L exposure achieved by backfilling the chamber. The 

water is obtained in-house. The procedure used for its purification is 

described elsewhere (ig). It is introduced to the chamber via a variable 

leak valve. 

Between experiments, the sample is cleaned by exposure to 1 L of 

oxygen followed by monitoring mass 28 (for CO) as the sample is heated, 

to detect carbon residues on the surface. In general, no mass 28 signal 

is detectable when this procedure is used. This "titration" is followed 

by a one-minute anneal to 1650 K in vacuum, to remove adsorbed oxygen. 

After this procedure, no oxygen Is observable in the Auger. 

The sample is cooled to about 90 K prior to its exposure to water or 

ether. A heating rate of approximately 10 K/sec is used to induce 
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desorptlon. Typically, masses 19, 28, 31, 50, 69 and 119 are monitored 

when the ether is adsorbed alone, and masses 2 and 18 are added when 

water is co-adsorbed. 
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EXPERIMENTAL RESULTS 

Desorption 

Perfluorodiethvl ether 

Three states are observed in the desorption of perfluorodiethyl 

ether from Ru(lOO). At low coverages, two states grow in simultaneously 

at -135 K and -ISO K. We label these as a, and aj. The corresponding 

desorption energies, calculated by the method of Redhead (IZ) and 

assuming a pre-exponentlal factor of lO" s"\ are 35 and 37 kJ/mol, 

respectively. These two states merge at high exposures, moving up to 

-170 K. We assign these features to molecular chemisorption of 

perfluorodiethyl ether in a first or second layer, which is perturbed by 

the close proximity of the metal surface. 

The third state observed in the thermal desorption spectra of 

perfluorodiethyl ether from Ru(lOO) grows in at high exposures and 

exhibits characteristics of a multilayer state. This peak, labelled ?, 

appears at -120 K, similar to its position also on Ru(OOl) (5, 6). The 

thermal desorption spectra of perfluorodiethyl ether on Ru(lOO) are shown 

in Fig. 3. 

Water Pre-adsorotlon 

When water adsorption precedes that of the fluorinated ether, the 

desorption traces of both species are changed relative to those traces 

which would be obtained in the absence of the other adsorbate. 

Specifically, the water A-state (at 240 - 180 K) and the water 
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Figure 3. Thermal desorption traces of perfluorodiethyl ether on 

Ru(100), following adsorption at 90 K 
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multilayer, I.e., the C-state (at 160 K), remain unperturbed In position 

or shape (Ifi, IS). Their relative populations do change, however, 

indicating that the ether displaces some HgO from the A-state into the C-

state. Here, we focus mainly on the traces of the fluorinated ether, 

which deviate more strongly from their clean-surface form. These traces 

are shown in Fig. 4, for two different water pre-exposures. Assuming a 

relative HgO coverage of - 1.0 at the point where the multilayer 

just begins to appear (Ifi), these two HgO coverages correspond to = 

1.0 and 1.4, as indicated in Fig. 4. The Integrated area of the water 

desorption peaks is Independent of the ether exposure, indicating that 

the ether does not displace the water from the surface, and these 

relative coverages of water are maintained in all the experiments 

represented by Fig. 4. The pre-adsorbed water has two main effects on 

ether desorption. First, the and «g states are less well-resolved at 

low coverage. Second, these states do not shift upward in temperature as 

coverage Increases, unlike the situation for the clean surface. In other 

words, the presence of water shifts these peak positions downward in 

temperature by as much as 25 K, the shift being most pronounced at high 

ether exposures. Finally, the multilayer grows in at approximately the 

same exposure and temperature as it does in the absence of water. 
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Figure 4. Thermal desorption traces for perfluorodiethyl ether/water 
coadsorption experiments 
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Decomposition 

The best measure of the amount of decomposition of the 

perfluorodiethyl ether Is In the Integrated desorptlon peak area as a 

function of exposure. These data are plotted In Fig. 5 for 

perfluorodiethyl ether on clean and water pre-dosed Ru(lOO). In a11 

cases, little or no decomposition of the ether occurs, based on the 

linearity of the data and the fact that the lines described by the data 

nearly Intersect the origin. The slope of the area vs. exposure function 

Is somewhat smaller for the water pre-dose experiments. Indicating that 

the sticking coefficient of the ether is slightly lower in the presence 

of water. Also, the absence of any CO signal (I.e., absence of residual 

surface carbon) when the sample is titrated with oxygen between 

experiments is a very good indication that no decomposition occurs. 
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EXPOSURE (TORR-S) 
Integrated desorption area versus exposure for 
perfluorodiethyl ether on clean Ru(lOO) and on Ru(lOO) with 
water coverages of 8'^^fl.O and 0'„^o-1.4 

Water is adsorbed first. The clean surface data are 
represented by circles and a solid line. The data 
are represented with squares and a dotted line. 8\^o=1.4 data 
are represented by triangles and a broken line. 
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DISCUSSION 

The appearance of two sharp peaks In the desorptlon spectra of 

perfluorodiethyl ether from Ru(lOO) 1s Interesting, since only one 

feature Is observed on Ru(OOl) (i-g). The origin of these two peaks is 

unclear, but most certainly lies in the surface morphology. It is 

interesting to note that the relative population of the and «2 states 

is not very reproducible, especially at low exposure. It may be that the 

number of surface sites available for the and org states is variable. 

Recall that this surface is most probably a combination of Ru(lOO) and 

Ru(OlO) planes. We suspect that the number and/or size of the 'patches' 

of each type of crystallographic orientation may change when the sample 

is annealed between experiments, thereby making one state or the other 

prevalent in a given experiment. We expect that the ether will bond 

through the oxygen, and that the oxygen will sit on the more 

electropositive on-top sites so that it can freely donate electron 

density to the metal surface. This may then leave the perfluorinated 

side chains to fall into or above the troughs. The only difference 

between these two surfaces is the trough depth, as shown in Fig. 2. It 

may be that the (010) surface, with its deeper troughs, can allow the 

oxygen of the perfluorodiethyl ether to approach the surface more closely 

before the fluorinated side chains begin to be repelled by the 

electronegativity of the trough. 

Note that the desorptlon energies of the a states, 37 and 39 kJ/mol, 

are similar to that of the single desorptlon state observed on Ru(OOl), 
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at 42-43 kJ/mol. We therefore conclude that surface morphology does not 

play a large role In the strength of the ether-surface bond. 

The Interaction between the fluorlnated ether and coadsorbed water 

Is complex. The ether displaces some chemlsorbed water into the 

multilayer, while its own adsorption bond strength is weakened by the 

presence of water. It is clear that there is a competition between these 

two adsorbates, for adsorption sites and/or for more subtle electronic 

factors which Influence the surface bond strength. One approach to 

understanding these data Is to use Lewis acid-base theory. An important 

rule of thumb in Lewis acid-base theory is that hard acids prefer to bond 

with hard bases and soft acids prefer to interact with soft bases, where 

the adjectives "hard" and "soft" refer to the polarizabllity of the 

molecule (Ig). An Important exception to this rule which may be relevant 

for the present work is a concept called symbiosis (19). This phenomenon 

occurs in metal llgand systems. Once a metal has formed a bond with a 

ligand, be it hard or soft, the metal tends to bond to only ligands of 

that kind. 

According to Lewis acid-base theory, a metal surface can act as 

either a soft Lewis acid or a soft Lewis base (20). Several interactions 

must be considered when discussing this system In terms of Lewis acid-

base theory. First of all, the surface and the ether are a soft acid and 

a soft base, respectively, making a strong interaction between the two 

likely. Secondly, water, which Is a hard Lewis base, is stronger than 

the ether, and is also the preadsorbed ligand. We have determined 

experimentally that water weakens the ether surface bond strength. This 
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Interaction can be explained In one of two ways; either the water, being 

the stronger base, donates enough electron density to the surface to make 

formation of the ether-surface bond more difficult, or the metal surface 

forms ether-surface bonds less readily due to the symbiosis effect. 

Since the water, a hard Lewis base, is preadsorbed, the surface may 

subsequently tend to bond only to other hard Lewis bases. Diethyl ether 

is also a hard Lewis base, which should be softened upon fluorination. 

Fluorination is known to Increase the polarizabiHty of hydrocarbons 

(2.85 A' for CF^ vs. 2.60 A' for CH*) (21), and Increasing this parameter 

softens a molecule. Since polarizability values for both diethyl ether 

and perfluorodiethyl ether are not available in the literature, the 

extent of softening upon fluorination is unclear. However, the 

polarizability difference between CF^ and CH^ is small compared to the 

range of polarizabilities published (-0.2 to 14) (21) for various 

molecules ranging from hard to soft, suggesting that the polarizability 

difference alone between water and perfluorodiethyl ether is not enough 

to cause a symbiosis effect. We intend to continue this study with a 

series of water post-dose experiments, which should lend some insight 

into which of these two models is correct. If symbiosis is the 

dominating factor in this system, then preadsorbing the ether should show 

an ether-surface bond strength similar to that observed in the absence of 

water. However, if the strength of the two bases is the important factor 

in this system, the presence of the water may still weaken the 

interaction between the ether and the metal surface. 
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CONCLUSIONS 

We have studied the desorptlon of perfluorodiethyl ether from clean 

Ru(lOO), and from water pre-dosed Ru(lOO). Perfluorodiethyl ether 

desorbs from the clean surface in two chemlsorptlon features at 135 K and 

150 K, with desorptlon energies similar to that of the single desorptlon 

state observed on Ru(OOl). Water decreases the desorptlon temperature of 

these chemlsorptlon states by as much as 25 K. This Is an example of a 

hard Lewis base (water) weakening the Interaction between a soft Lewis 

base (the ether) and a soft Lewis acid (the metal). 

Water Is only slightly affected by the presence of the coadsorbed 

ether. Similar peak temperatures and peak shapes are observed. However, 

some of the water is displaced from the chemisorbed A-state into the 

multilayer C-state. This indicates that the Interactions ocurring 

between these coadsorbates can not be explained with any simple model. 

Little or no decomposition occurs on either the clean or the water 

pre-dosed surface. This stability against decomposition is a general 

property of the perfluorinated monoethers (S-S)-

We conclude from this study that surface morphology does not affect 

the strength of the ether-surface bond for perfluorodiethyl ether, but 

water pre-adsorption does. The electronegative water coadsorbate weakens 

the ether-surface bond strength. On a more practical note, this study 

indicates that conditions of high humidity may weaken metal-lubricant 

interactions. 
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CONCLUSIONS 

In this dissertation we Investigate the Interactions of water and 

perfluorodiethyl ether with Ru(lOO) In an attempt to advance the 

understanding of the effects of surface morphology and humidity on the 

bonding of perfluoropolyether lubricants to metal surfaces. The main 

conclusions which can be drawn are summarized below: 

a) Water bonds to Ru(lOO) primarily In a molecular fashion, only 5 

-10% of a monolayer dissociates. Two thermal desorptlon features are 

observed-a feature attributed to the chemisorbed monolayer which appears 

at 240 K at low exposures and decreases in temperature to 180 K as 

exposure Is Increased, and a feature attributed to desorptlon from a 

water multilayer which appears at 160 K. 

b) Electron energy loss data for water on Ru(lOO) are indicative of 

a fairly non-hydrogen-bonded species at low exposures with an increase in 

the amount of hyrdogen-bonding as exposure is Increased. 

c) Coadsorption of 0.50 L oxygen or 2 L hydrogen with water on 

Ru(lOO) pushes the water multilayer feature up in temperature so that it 

is indistinguishable from the monolayer desorptlon feature. 

d) Coadsorption of 0.50 L oxygen with low coverages (i.e., 

50-300 Torr s) of water on Ru(lOO) forces the peak temperature of the 

water monolayer feature up by as much as 65 K. 

e) Perfluorodiethyl ether Is molecularly adsorbed on Ru(lOO). It 

desorbs In three states-two states attributable to desorptlon from a 
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chemisorbed monolayer with desorptlon energies of 35 and 37 kJ/mol and 

desorptlon from a multilayer state at 120 K. 

f) Comparison of the degree of decomposition and the desorptlon 

energies of perfluorodiethyl ether on Ru(lOO) with results from Ru(OOl) 

Indicates that surface morphology does not affect the bonding of this 

molecule to metal surfaces. 

g) Both perfluorodiethyl ether and water bind to Ru(lOO) more 

weakly in the presence of the other. The monolayer peak temperatures of 

perfluorodiethyl ether are shifted to lower temperatures by as much as 

25 K due to the presence of a water monolayer. Small amounts (50 Torr s) 

of perfluorodiethyl ether force adsorbed water molecules from the 

monolayer to the multilayer state. 

h) These investigations indicate that humidity may be an Important 

consideration in the bonding of perfluoropolyether lubricants to metal 

surfaces, but surface morphology plays little role in their bonding. 



www.manaraa.com

96 

REFERENCES 

1. Y.Hu and F.E. Talke, in Triboloav and Mechanics of Magnetic Storage 
Systems. Vol. V, B. Bhushan and N.S. Eiss, Jr., Eds. (Society of 
Tribologists and Lubrication Engineers, Park Ridge, IL, 1988) p. 43. 

2. S. Mori and W. Morales, Wear 132 (1989) 111. 

3. R.G. Gilson and M. Davies, in Symposium Proceedings Textbook; The 
Symposium on Memory and Advanced Recording Technologies (Magnetic 
Media Information Services, Chicago, IL, 1986) p. 26. 



www.manaraa.com

97 

APPENDIX 1. 

A WARNING CONCERNING THE USE OF GLASS CAPILLARY ARRAYS IN GAS DOSING: 

POTENTIAL CHEMICAL REACTIONS 
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ABSTRACT 

We have encountered complications using a glass, cap111ary-array gas 

doser In our laboratory. In this note, we discuss the possibility that 

chemical reactions occur on the glass surface. 
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TEXT 

In any study of chemisorption on surfaces, it is necessary to expose 

the surface to the gas of interest in some controlled manner. Over the 

past ten years, effusive beam dosers have gained increasing popularity as 

a way of introducing reactive gases Into ultra-high vacuum systems (e.g., 

1-ê). The reason for their popularity is that they are simple, yet they 

provide a spatially-collimated beam which can selectively impinge on the 

sample. Thus, the gas pressure (local flux) at the sample can be several 

times greater than that which prevails in the vacuum chamber. 

Enhancements of up to 10^ have been reported relative to background 

pressure (i). 

There are two main ways of collimating a gas beam doser. One is to 

use a single narrow tube, or small aperture, at the end of the gas doser, 

aimed at the sample (effusive source). The other is to use a glass 

capillary array, in which thousands of small orifices (typically 10 

micron diameter) penetrate a glass frit, again aimed at the sample. The 

latter approach was first described by Goodman, Yates and Madey in 1978 

(1). Campbell has discussed the relative merits of these two approaches, 

in terms of flux and spatial homogeneity of flux at the sample (5). 

In this paper, we point out difficulties we have encountered in 

using the glass capillary array. We believe that these problems are due 

to reaction of the gas with the glass surface, exacerbated by the fact 

that the total surface area of the capillaries is extremely high. (For a 

glass frit which is 1 mm thick and 13 mm in diameter, with 10-micron 
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diameter capillaries, the total surface area is about 270 cmf.) These 

difficulties have been obviated in our laboratory by the substitution of 

a simple metallic aperture. 

Inconsistencies in thermal desorption spectra of perfluorodiethyl 

ether from Ru(lOO) lead us to suspect that the doser is chemically 

reactive. Early results from this system showed desorption states which 

were not reproducible, in spite of rigorous efforts to exclude all 

possible experimental problems, such as sample cleanliness. After 

replacing the glass doser with a metal aperture, several desorption 

states disappeared and the remaining desorption features have been 

completely reproducible over a period of several months. 

Although ethers are generally unreactive molecules [cleavage takes 

place in solution only under vigorous acidic conditions (7)], we suspect 

that the silica surface of the glass frit may be acidic enough to induce 

cleavage. Silica surfaces are generally hydroxylated unless care is 

taken to dehydrate them. Small amounts of AlgO, make silica strongly 

acidic (8). The glass frits commonly used in these dosers are obtained 

from Galileo (9) and are a Corning R-6-soda lime glass which contains 

primarily SiOg (73 wt. %), with about 1.7 wt. % AlgO^, among other 

additives (ifi). Therefore, the doser frit surface may be acidic enough 

to catalyze cleavage of the ether. In addition to the suspected 

reactions on silica, the sodium and potassium in these glasses may also 

promote chemical reactions. 

In summary, we suspect decomposition of perfluorodiethyl ether at a 

glass frit of the type commonly used in capillary-array gas dosers. We 
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caution other users against the possible reactivity of glass capillary 

array dosers. 
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APPENDIX 2. 

COMPUTER PROGRAM AND INTERFACE FOR THERMAL DESORPTION STUDIES 
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INTRODUCTION 

For convenience In obtaining and analyzing data, the instrumentation 

necessary for thermal desorption experiments has been interfaced to an 

IBM-AT computer. This interface allows essentially simultaneous 

monitoring of up to eight masses for each thermal desorption experiment. 

In this manner, the parent mass for the compound of Interest as well as 

several fragment peaks and suspected decomposition fragments can be 

monitored in order to obtain information about the stability of a given 

molecule on the surface. For instance, if the compound of interest is 

perfluorodiethyl ether (PFDE), which has a parent peak at m/z-230, 

several masses of interest can be monitored. 

First of all the parent peak may be monitored if it has enough 

intensity. In this case, mass 230 is not a very intense peak in the 

cracking pattern of PFDE. Therefore, a mass of more interest might be 

m/z=69, which is the most intense fragment in the cracking pattern of 

PFDE. The Intensity of this mass can be monitored and compared to that 

of other masses in the cracking pattern to assimilate information 

concerning decomposition. For Instance, m/z-69 can be ratioed to masses 

31, 50 and 119, which are all abundant in the cracking pattern as well. 

These ratios, as well as thermal desorption data from suspected 

decomposition fragments (for Instance, mass 28 for CO), provide us with 

information concerning the amount and mechanism of decomposition. 
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HARDWARE 

The equipment necessary for a thermal desorptlon experiment Includes 

a mass spectrometer and a temperature control circuit. In this 

laboratory, a UTI lOOC quadrupole mass spectrometer and a Hertz 

temperature controller circuit (1) are used to perform the experiments. 

These are Interfaced to an IBM-AT computer for multi-mass thermal 

desorptlon experiments. The AT Is equipped with a Hercules card for high 

resolution graphics and a math coprocessor for use with IBM Professional 

Fortran software. Once obtained, the data can be plotted out on a 

Hewlett-Packard 7470A plotter or printed on a Star Nicronics NX-1000 

printer. 
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INTERFACE 

The Interface between the computer and the equipment used In 

acquiring data 1s accomplished with two Interface boards, two voltage-to-

frequency converters, and eight REED relays. The interface boards, a 

CTN-05 board and a DAC-02 board, are both manufactured by MetraByte. The 

CTM-05 board is a counter/timer and digital input/output expansion board. 

It has five Independent 16-b1t counters, and eight bits each of TTL/DTL 

digital input and output with latch. It is also equipped with a 

programmable frequency output. Digital output from the CTM-05 board is 

buffered using Inverters and then used to control low current REED 

relays. The inverting buffers make it necessary to operate the relays in 

the negative logic mode. Therefore, to turn a relay 'on', the 

corresponding digital output bit must be set LO. Output ports 0-7 

(0P0-0P7) carry the voltage signals from the CTM-05 board to the REED 

relays. 

The UTI mass spectrometer Is controlled by ports OPO-OP4. Output 

port zero controls the multiplier function (essentially turning the mass 

spectrometer on and off). Output ports 1-4 control the gain range on the 

mass spectrometer. Various combinations of HI and LO signals at these 

ports produce the different gain ranges. The necessary combinations of 

signals for each range are illustrated in Table 1. For example, to set 

the mass spectrometer to a range setting of 10'^ amps full scale, a LO 

must be sent to 0P2 and 0P3. This is essentially equivalent to grounding 

pins 5 and 14 at the UTI Interface connector. 
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Table 1. UTI pin number settings for various gains 

Range Output Port State UTI Pin Number 

10"' 0P4 LO 16 

10'* 0P3 LO 14 
0P4 LO 16 

10'^ 0P2 LO 5 

10* 0P2 LO 5 
0P3 LO 14 

10' OPl LO 3 
10"^° OPl LO 3 

OPS LO 14 
1()'" OPl HI 3 

0P2 HI 5 
0P3 HI 14 
0P4 HI 16 

lO'i: OPl HI 3 
0P2 HI 5 
0P3 LO 14 
0P4 HI 16 
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The Hertz temperature controller is controlled by OP5-OP7. A 

momentary LO at OPS starts the temperature ramp, a momentary LO at 0P6 

stops the ramp, and a momentary LO at 0P7 resets the controller. 

The relays used to carry the signal from the output ports of the 

CTN-05 board to the mass spectrometer or temperature controller are low 

current, 32 volt, TTL compatible, REED relays. The relays that control 

the mass spectrometer functions are located in the interface box which is 

located near the computer, and those that control the temperature 

controller are located inside the chassis of the Hertz temperature 

controller. 

The DAC-02 board consists of two 12-bit digital to analog converters 

(DAO and DAI). Only one of these is presently used (DAO) to set the AMU 

via the external program input of the mass spectrometer. 

Once the signals have been sent to the mass spectrometer and the 

temperature controller, the experiment is running and its progress must 

be monitored and the appropriate data values must be collected. This is 

accomplished with a combination of the two voltage to frequency 

converters and the five counters found on the CTM-05 board. 

Counter number 1 on the CTM-05 board provides a waveform which 

triggers counters 2, 4 and 5. This waveform is designed by the operator 

when the experimental parameters are set. The waveform begins by arming 

counter 1. Then the "delay" time is allowed to pass. This is a 

parameter set by the operator (generally 10-20 msec) which allows the 

mass spectrometer picoammeter time to settle when the gain is changed. 

At least 10 msec of settling time are generally required. Following the 
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delay, counter 1 signals the first gate edge, and counters 4 and 5 are 

armed and begin counting. The count interval, which is also set by the 

operator as the "dwell", is then passed. This value can be anywhere from 

10-99 msec, and defines the length of time a signal will be averaged for 

each data point. Once the dwell time has passed, counter 1 signals the 

second gate edge which stops the count at counters 4 and 5 and signals 

them to transfer their count to a hold register. When counter 1 has 

signaled both the first and second gate edge, it then has a count of 2 

(one for each gate edge) in its hold register. This value of two at 

counter 1 signals a high at counter 2, which is being used as a 

comparator, indicating that the conversion is complete (i.e., one data 

point has been taken). Counter 2 is wired to the digital input port as 

INPO, so this HI input signal from counter 2 triggers the software to 

restart the count for the next data point. Counter 3 is loaded and armed 

at the beginning of the experiment, and simply keeps track of the elapsed 

time (1 count-10 msec). 

The two voltage to frequency converters (both are Burr Brown VFC 

320's with 65,000 counts per 10 volts full scale) are used to convert the 

analog output from the mass spectometer and the temperature controller 

into frequencies that can be counted. Counters 4 and 5 are tuned to read 

the frequencies of the mass spectrometer and the temperature controller 

voltage to frequency converters, respectively. 
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SOFTWARE 

The software utilized In this program Includes Professional 

Fortran, version 1.2, No Limit Fortran Library, version 3.0, and Graphics 

Development Toolkit. The TESTTDS.FOR program was originally written by 

J. A. Polta with documentation by B. S. Nielsen, and major modifications 

by J. W. Anderegg and J. S. Dyer. The SLOWTDS.FOR version of the program 

was developed from the original program by J. S. Dyer. The program is 

structured such that one major program (TPP.FOR) introduces and 

initializes the main variables in the program and calls a series of 

subroutines to carry out the necessary functions in the program. Many of 

these subroutines are included in other programs which were set up to 

carry out specific tasks in the thermal desorption experiment. For 

instance, the AMASS.FOR program is a unit which acquires the mass data. 

It contains the subroutine ACQUIRE. Table 2 is a tabulation of the 

Fortran programs utilized in the TESTTDS.FOR program along with a listing 

of the subroutines found in each of them, and the main purpose of the 

program. 

Some subroutines, which are required to carry out relatively simple 

operations (such as converting a real number to an integer) are located 

in a library titled MYSUPl.LIB. The programs (and the subroutines 

therein) which are included in MYSUPl.LIB are denoted by an asterisk in 

Table 2. 

A second library has been constructed for use with the TESTTDS.FOR 

program. This library, called MYSUP.LIB, contains four programs which 
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Table 2. Fortran programs used in TESTTDS.FOR program 

Program Purpose Subroutines 

TPP.FOR 
(TDS) 

-Main TDS program 
-Sets default values 
-Allows operator to 
change parameters 

SHOW 

TAIP.FOR -Acquires time and 
temperature data 

TDSRUN 
TDSACQ 
GETDAT 

T2TP.F0R -Converts Kelvin 
temperatures to mV 
using an empirical 
fit with 3rd-order 
polynomials 

KTOMV 
ITOK 
MVTOK 
MVOCT 
ITOKR 

EMASS.FOR -Sets up the screen 
for taking mass spec 
data 

MS 

AMASS.FOR -Acquires the mass 
data 

ACQUIRE 

MMASS.FOR -Plots mass spec data 
on the screen 

MONPLT 

HMASS.FOR -Plots TDS data on the 
Hewlett Packard 
plotter 

HPLOT 

NEWM2P.F0R -Plots TDS data on the 
screen, plotter, or 
printer 

M2 

AREAP.FOR -Calculates the area 
under a designated 
peak 

AREACALC 

INTCHAR5.F0R -Converts an integer 
to a character * 5 

INTCHAR5 
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Table 2 (Continued) 

Program Purpose Subroutines 

TIP.FOR" -Consists of a series 
of subroutines which 
set up the operating 
parameters for a TDS 
experiment 

FNAMEP 
DATEP 
MENU 
ERASE 
ABSCSR 
VIDATR 
MESSON 
MESSOFF 
AMUP 
COP 
DELAYP 
OFFP 
SMPISP 
YSCP 
OPRARP 
ATRNG 
DWELP 
SLOPEP 
ITEMPP 
FTEMPP 
NMASSP 

CMASS.FOR" -Consists of a series 
of subroutines and 
functions which 
change variables from 
reals to Integers and 
vice versa, and 
similar operations 

INTCHAR 
INTCHAR4 
REALCHAR 
RCHAR5 
RCHARll 
CHARINT 
CHARINT4 
WAIT 
FXR 
FYR 
FXTR 
FYTR 

CMASSTM.FOR" -Calls subroutine 
CTMSP to set up the 
counters and timers 
on the CTM-05 board 

CTMSP 

INOUTP.FOR" -Consists of subrou­
tines to store and 
load data and send it 
to the DEC printer 

STORE 
LOAD 
DPRINT 

"Programs appearing in MYSUPl.LIB. 
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are written In assembler language, and are required to Input and output 

data. These programs and their functions are listed In Table 3. Table 4 

is a list of all the subroutines in the program, a short description of 

the function of each one, and its location. 
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Table 3. Programs appearing in HYSUP.LIB 

Program Purpose Function 

TIME(G) -Reads the system 
clock 

Not used in program 

IPEEK -Looks at a number at 
a specific memory 
location 

Not used in program 

I POKE -Places a number at a 
specific memory 
location 

Not used in program 

INPRT" -Inputs a value to the 
computer 

Used in program 

OUTPRT" -Outputs a value from 
the computer 

Used in program 

"These two programs are found on a floppy disk labelled 
MISCELLANEOUS!. 
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Table 4. Subroutines in the TPS program 

Subroutine Description Location 

ABSCSR" -Sets the position of 
text on the screen 

TIP.FOR" 

ACQUIRE -Acquires data for the 
mass spectrum 
-Init. range and AMU 
-Increments DOUT 

AMASS.FOR 

AMUP" -Accepts and displays 
the AMU information 
for each mass peak as 
entered by the 
operator 

TIP.FOR" 

AREACALC -Calculates the area 
under a designated 
peak 
-Displays the value 
of time, temperature 
and intensity at any 
chosen cursor point 

AREAP.FOR 

ASZRO -Calls a series of MEF 
Fortran subroutines 
to perform simple 
commands 

NLVR3TS2.F0R: 

ATRNG -Accepts and displays 
the ranging mode 

TIP.FOR" 

CHARINT -Converts a 
character*3 to an 
integer (15) 

CMASS.FOR" 

CHARINT4 -Converts a 
character*4 to an 
integer (15) 

CMASS.FOR" 

CHKORV -MEF Fortran routine 
that checks a drive 
for errors or status 

MEF FORTRAN.LIB 

"Subroutine uses the ascii character set. 

''Program located in MYSUPl.LIB. 

"Program located in FORTRAN\LIBRARY. 
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Table 4 (Continued) 

Subroutine Description Location 

#COP -Accepts and displays 
four comment lines of 
up to 40 characters 
each 

TIP.FOR" 

CTMSP -Sets up all the 
timers on the CTM-05 
board 

CMASSTM.FOR" 

DATEP" -Accepts and displays 
the date for the 
current data file 

TIP.FOR" 

DELAYP -Accepts and displays 
the delay time 

TIP.FOR" 

DPRINT -Allows data to be 
printed on the DEC 
printer 

INOUTP.FOR" 

OSKINF -MEF Fortran routine 
that locates free 
disk space 

MEF FORTRAN.LIB 

DWELP -Accepts and displays 
the counting time 
(dwel1) 

TIP.FOR" 

ERASE" -Clears the screen TIP.FOR" 

FILINF -MEF Fortran routine 
to obtain information 
about a file 

MEF FORTRAN.LIB 

FILSTG -MEF Fortran routine 
to fill a string with 
characters or bytes 

MEF FORTRAN.LIB 

FNAMEP' -Accepts and prints 
the filename, device 
and extension of the 
current data file 
across the top of the 
screen 

TIP.FOR" 

FRANDW -MEF Fortran routine 
to perform a logical 
AND on two words 

MEF FORTRAN.LIB 
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Table 4 (Continued) 

Subroutine Description Location 

FRSHRW -MEF Fortran routine 
to perform a logical 
"shift right" on a 
word 

MEF FORTRAN.LIB 

FTEMPP -Accepts and displays 
the final temperature 

TIP.FOR" 

FXR -This is a function 
that converts a 
real % into an x-axis 
graphics unit 

CMASS.FOR" 

FXTR -This is a function 
that converts an 
integer % into an 
x-axis graphics unit 

CMASS.FOR" 

FYR -This is a function 
that converts a 
real % into a y-axis 
graphics unit 

CMASS.FOR" 

FYTR -This is a function 
that converts an 
integer % into a 
y-axis graphics unit 

CMASS.FOR" 

GETDAT -Obtains count from 
counters 3, 4 and 5 
(total elapsed time, 
intensity and 
temperature) 

TAIP.FOR 

HPLOT -Plots mass spectra 
acquired by MS 
subroutine on the 
Hewlett-Packard 
plotter 

HMASS.FOR 

INKEY -MEF Fortran routine 
to read the keyboard 
one key at a time 

MEF FORTRAN.LIB 

INSTR -MEF Fortran routine 
to find a string 
match 

MEF FORTRAN.LIB 

INTCHAR -Converts an integer 
to a character*3 

CMASS.FOR" 
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Table 4 (Continued) 

Subroutine Description Location 

INTCHAR4 -Converts an Integer 
to a characters 

CMASS.FORb 

INTCHAR5 -Converts an Integer 
to a character*5 

INTCHAR5.F0R 

ITEMPP -Accepts and displays 
the Initial 
temperature 

TlP.FORb 

ITOK -Converts counts to mV 
-Calls MVTOK to 
convert from mV to 
Kelvin 

T2TP.F0R 

JUSTL -MEF Fortran routine 
to left justify a 
character string 

MEF FORTRAN.LIB 

KTOMV -Converts Kelvin 
temperatures to mV 
using an empirical 
fit with 3rd-order 
polynomials 
-Calls MVTOK to 
convert from mV to 
Kelvin 

T2TP.F0R 

LINEA -MEF Fortran routine 
to draw a line, a 
box, or a filled box 

MEF FORTRAN.LIB 

LOAD -Loads TDS or MS data 
from drives A: or D: 
to drive C: into the 
program 

INOUTP.FOR" 

M2 -Uses Graphics 
Development Toolkit 
routines to open the 
workstation and plot 
TDS data to the 
screen, plotter or 
printer 

NEWM2P.F0R 

MENU" -Arranges the menu on 
the screen 

TIP.FOR" 
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Table 4 (Continued) 

Subroutine Description Location 

MESSOFF" -Shuts off the 
blinking message on 
the screen 

TIP.FOR" 

MESSON' -Prints a blinking 
message on the bottom 
of the screen 

TIP.FOR" 

MONPLOT -Plots mass spectra 
acquired by MS 
subroutine on the 
screen 

MMAS.FOR 

MS -Sets up the screen 
for taking mass 
spectral data 
-Turns on mass 
spectrometer 
-Acquires mass 
spectral data 
-Displays mass 
spectrum on screen 
-Calls various 
subroutines to carry 
out menu functions 
such as load, store, 
erase, etc. 

EMASS.FOR 

MVOCT -Converts mV to counts 
using an empirical 
fit with an 8th-order 
polynomial 

T2TP.F0R 

MVTOK -Converts from mV to 
Kelvin using the 
calibration from a Re 
5%-26% thermocouple 
and a 5th-order 
polynomial 

T2TP.F0R 

NMASSP -Accepts and displays 
the number of mass 
peaks observed 

TIP.FOR" 

OFFP -Accepts and displays 
the y-offset value 
for the current data 
on the screen 

TIP.FOR" 
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Table 4 (Continued) 

Subroutine Description Location 

OPRARP -Accepts and displays 
the name of the 
current operator (up 
to 24 characters 
long) 

TIP.FOR" 

OUTPRT -Subroutine written in 
assembler language to 
output data from the 
computer 

MYSUP.LIB 

PUTCUR -MEF Fortran 
subroutine to put an 
alphanumeric cursor 
on the screen 

MEF FORTRAN.LIB 

RCHAR5 -Converts a real 
number (F5.2) to a 
character*# 

CMASS.FORb 

RCHARll -Converts a real 
number (F11.2) to a 
character*!! 

CMASS.FORb 

REALCHAR -Converts a real 
number (F4.2) to a 
character*4 

CMASS.FOR" 

SCROLL -MEF Fortran routine 
used to scroll a 
window portion of the 
screen 

MEF FORTRAN.LIB 

SEAGAPl -MEF Fortran routine 
used to set an 
Individual EGA 
palette register 

MEF FORTRAN.LIB 

SEGAAL -MEF Fortran routine 
used to set all EGA 
palette registers and 
border 

MEF FORTRAN.LIB 

SHOW -Sets the initial 
screen display 
-Updates screen for 
the TDS experiment 

TPP.FOR 
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Table 4 (Continued) 

Subroutine Description Location 

SLOPEP -Accepts and displays 
the slope of the 
heating ramp 

TlP.FORb 

SMPLSP -Accepts and displays 
the sampling interval 

TlP.FORb 

STORE -Stores TDS or MS data 
from the program in 
drive C: to drives A: 
or D: 

INOUTP.FOR" 

TDSACQ -Acquires current, 
time and temperature 
data 
-Turns on temperature 
controller 
-Sets AMU 
-Sets mass 
spectrometer gain 
-Loads and arms all 
timers 
-Stops temperature 
ramp and turns mass 
spectrometer off 
-Allows early abort 
using 'shift s' 

TAIP.FOR 

TDSRUN -Initializes gain and 
AMU values 
-Determines final 
temperature in counts 
-Calls TDSACQ to 
acquire the TDS data 

TAIP.FOR 

VIDATR" -Sets the video 
attributes of the 
screen 

TIP.FOR" 

WAIT -Wastes time CMASS.FORb 

WCHARS -MEF Fortran routine 
that writes a string 
of characters 

MEF FORTRAN.LIB 

YSCP -Accepts and displays 
the y-scale for the 
current data 

TIP.FOR" 
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PROGRAM OPERATION 

The program (presently, TESTTDS) Is a menu-driven thermal desorptlon 

program. It Is relatively simple to use. When called, the program 

prints the Initial 'default' menu on the screen. A copy of this menu Is 

given In Fig. 1. To the left of the screen, all of the experimental 

parameters, with the exception of the masses and their respective gains, 

are displayed. These parameters can be changed by typing In the first 

two letters of the desired parameter, and then typing in the new choice 

for that particular parameter. The CAPS LOCK must be on for the program 

to accept user commands. 

The 'drive' parameter Is used to choose the drive at which the 

current data set should be stored, or loaded. To change the drive 

choice, simply type in the letter of the desired drive (only drives C, D 

and A are accessible.) Note that drive D is a random-access memory (RAM) 

drive which is cleared every time the computer is booted. 

The 'date' is simply the date on which the current data set is 

acquired. The form of this parameter is not rigidly set by the program 

(i.e., both 1/29/62 and 1-29-62 are acceptable). The date is simply 

formatted as an 8-character string. 

The 'operator' parameter allows a 24-character long string to be 

input describing the current operator. No spaces or punctuation can be 

used in this string. 

The 'filename' is set up In a manner similar to the 'operator' 

except that only 10 characters are permitted In this parameter. The 
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Version 3 25 MAR 88**$****$*****$$* 

DRIVE: A: FILENAME: FILENAME EXTENSION: .TDS 
DATE: MM/DD/YY 
OPERATOR: MASS# AMU RN6 
RANGING: AUTO 
DWELL TIME: 10 1 2 4 
DELAY: 10 2 18 4 
SLOPE: 6 3 28 4 
INITIAL TEMP: 300 4 44 4 
END TEMP: 500 5 *** ** 
NUMBER OF MASSES: 4 6 *** ** 
Y-SCALE: 1.00 7 *** *$ 
OFFSET Y: 0 8 $** ** 
COMMENTS: 

ENTER THE FIRST TWO LETTERS OF YOUR CHOICE TO CHANGE ( ICR) 

Figure 1. Default menu for TDS program 
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filename will have the 'extension' that Is chosen for that parameter. 

The default characters for 'extension' are .TDS. Note that only 3 

characters are accepted for this parameter. 

The program was originally designed to set the mass spectrometer 

ranges Independent of the operator. However, the autoranging section of 

the program has never functioned properly. As a result of this original 

setup, a parameter called 'ranging' still exists In the program. The 

possible choices for this parameter are 'auto' and 'manual'. Since the 

autoranging does not work, the 'manual' choice Is necessary. 

The 'dwell' Is the number of milliseconds that the computer collects 

data for a given mass and a particular data point. This value can range 

from 5 to 100 milliseconds. Closely related to this value Is the 

'delay'. This parameter describes the amount of time the computer should 

sit at a given mass before it begins collecting data for a particular 

data point. The default for this parameter is 10 milliseconds, and 

common values are between 10 and 30 milliseconds for a dwell of 10 to 20 

milliseconds, and a slope of about 10 K/s. The delay can be varied from 

10 to 85 milliseconds. When setting these values, one should also 

consider the slope at which the experiments will be run. The 'slope' can 

be varied from 1 to 10 on the Hertz temperature controller. This 

corresponds to a variation in heating ramp from .1 to 100 mV/min, or 

about .2 to 200 K/sec at room temperature. Generally slopes between 4 

and 7 are used. Once the slope has been chosen for a particular 

experiment, the dwell and delay values can be set. For "slow" slopes 

(<5), the dwell (and possibly the delay) should be set to relatively long 
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times (>30) so that numerous data points will not be taken at each 

temperature In the range. Taking too many points at a particular 

temperature value will fill up the data arrays quickly making long 

temperature ramps Inaccessible at slow slopes, and It will also make the 

data look rather "noisy". 

The 'Initial temp' Is the temperature at which the computer will 

begin collecting experimental data and the 'end temp' Is the temperature 

at which the computer will halt data acquisition. These temperatures 

should be entered In Kelvin. The computer will convert these values to 

mV and finally to their corresponding counts, so that these values can be 

compared to those obtained at the voltage-to-frequency converter In the 

Hertz controller. 

The 'number of masses' parameter allows the operator to choose the 

number of masses the computer should monitor. From 1 to 8 masses can be 

monitored essentially simultaneously for any given experiment. The 

masses to be monitored, and their corresponding gain values are displayed 

near the middle of the screen. To set a given mass, the mass number 

(I.e, 1 to 8) Is entered, and then the desired AMU value can be entered. 

The 'rng' can be set for each mass by choosing the 'ranging' parameter. 

When 'manual' ranging is. chosen, the computer will ask the operator to 

input the range for each AMU requested. 

The 'y-scale' and 'offset y' parameters allow the data to be scaled 

or moved In the y direction on the screen or plotter. Y-scale values can 

range from 0 to 99. The plot can be moved up or down on the screen or 

plotter by adjusting 'offset y' to an Integer value between +9 and -9. 
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These values correspond to screen units. The plotting screen Is set up 

Into 10 units on the y-scale. This is simply an equal division of the 

plotting box on the screen or plotter into 10 parts. 

The 'comments' parameter allows the operator to write any pertinent 

comments to the data file. Up to 4 lines of 40 characters each are 

available for comments. This parameter can either be accessed by 

entering CO or by entering CI, C2, C3, or C4 for the appropriate comment 

line. 

On the right side of the menu are the choices of operations that can 

be performed. The 'R-PLOT' option gives a plot of time vs. temperature. 

This plot is useful for determining the heating rate at a given 

temperature to a first approximation. 

The 'AREA' option allows the operator to determine the area under a 

selected plot. Once the area option is chosen, the operator is asked to 

choose which mass to integrate. In the area routine, the operator may 

choose to take the area of the chosen mass or determine the signal 

intensity, temperature, point number and time at any particular point in 

the spectrum. The latter is accomplished by entering 'V for value. The 

area, taken after the first and last point are chosen and the operator 

requests to have the area calculated, is given in Amp seconds. 

The 'LOAD' and 'STORE' options load the data set chosen in 

'FILENAME' from, or store it to, the specified 'DRIVE'. 

The 'K-PLOT' option plots out a spectrum for a particular mass, 

specified by the operator, to the screen, printer, or plotter. The 

spectrum plots Intensity vs. temperature. The 'T-PLOT' option is very 
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similar to 'K-PLOT', except that the data is plotted as intensity vs. 

time. This is the plotting function called in the area routine, so that 

a time-integrated area is obtained. When plotting to the plotter from 

either the k-plot or the t-plot option, note that the left pen Is pen #1 

and the right pen is pen #2. 

The 'MS' option allows the operator to take a computer controlled 

mass spectrum. This option calls a new menu to the screen with many of 

the same options found on the main TDS menu. In this case, the operator 

must set the initial and final AMU values defining the scan region. 

The 'PRINT' option prints the current data set to the printer 

designated lpt1. The print routine is designed for the wide carriage of 

the DEC printer. 

To run the thermal desorption experiment, the operator chooses the 

'RUN' option after all of the experimental parameters have been chosen. 

This option turns the mass spectrometer and the temperature controller on 

and off at the appropriate times and obtains the time, temperature, and 

intensity data for the experiment. The data file will consist of data 

arrays (of up to 5000 points) for time, temperature, and intensity at 

each mass observed. Note that the mass spectrometer must be In the 

external mode with the standby option chosen, and It must be set to a 

gain of 10'^^' The temperature controller should be set at the 

appropriate slope and should have the heater switch in the on position. 

Also, as always when running a temperature ramp, the power supply for 

heating the sample must be on. Finally, note that whenever using the 
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computer to set values at the mass spectrometer or the temperature 

controller, the Interface box must be on. 

To exit the program, two options are available. These are 'QUIT' 

and 'DOS'. The quit option Is somewhat faster, but it does not store the 

data or the current parameters. When the program Is exited through DOS, 

the current data set and parameters are stored on drive D, and are 

reentered when the program Is called next (assuming the computer is not 

rebooted before the program is called again). 
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SUPPLEMENTAL PROGRAMS 

There are two programs on the IBM that are useful in combination 

with the thermal desorption program. These are the 'FIXDATAl' program 

for obtaining instantaneous heating rate data, and the 'DACSWEEP' program 

for determining the appropriate DAC values for each mass to be observed 

in the thermal desorption experiments. 

The 'DACSWEEP' program was written in basica by J. S. Dyer, and is 

found in the basicpgm directory. Choosing the 'TUNE' option of this 

program, allows the operator to enter a DAC value. This DAC value will 

be output to the mass spectrometer. By observing the mass spectrometer 

intensity in the region of the masses of interest, the operator can 

choose the appropriate DAC units to use in the experiment (that is, the 

DAC unit with greatest signal intensity for each mass). One can vary the 

DAC values by one unit at a time using the F9 and FIO keys as stated in 

the program. Note that the mass spectrometer must be in the external 

mode when using this program, but the operator must turn the mass 

spectrometer on and set the range value. 

Once the best DAC values have been obtained for each mass, the 

operator must fit the AMU vs. DAC data to two straight lines, one for 

masses <5 and one for masses >5. Once the slopes and intercepts of these 

lines are obtained, they must be entered into the program. The lines in 

the program that set the DAC units are found in program TAIP.FOR. The 

linear equations in the program read as follows: 

D0UT-(m/z)*13.xxxx +(-) xxxx. 
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These equations can be accessed by searching the TAIP.FOR program, using 

MS WORD, for DOUT. Once these equations have been set for the desired 

experimental values, the TAIP.FOR program must be re-compiled and finally 

re-linked to the thermal desorption program. 

The second supplementary program of Interest is the FIXDATAl.FOR 

program. This program is found in the PROGRAMS subdirectory of the TDS-

NOW directory. It is useful for determining the instantaneous heating 

rate at a given temperature for a particular experiment. This value is 

necessary for determining the desorption energy using the Redhead 

equation. 

To use this program, simply call it from the TDS-NOW\OBJECT 

directory. The program will begin by asking the operator to input a 

filename with drive specification and extension. Then the program will 

smooth the data in the temperature domain by applying linear least 

squares fits to 15 point segments. The least squares fit removes any 

"wobble" (fluctuations) in the temperature domain caused by Inaccuracies 

in the temperature signal that is output from the voltage to frequency 

converter. Once the data has been entered and manipulated, the computer 

will request a new filename, again including drive specification and 

extension. This new data file will contain 5 columns of numbers. These 

are, from left to right, the smoothed time, the smoothed temperature, the 

instantaneous heating rate, the Inverse of the smoothed temperature 

multiplied by 1000, and the original temperature. 

A modification of this program, FIXDATA3.F0R, replaces the new 

temperature with the intensity data for the first mass in the TDS file. 
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The files generated In this program can be transferred Into the GRAPHER 

program for plotting, if needed. 
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APPENDIX 3. 

THE ADSORPTION OF HYDROGEN ON RU(IOO) 

THERMAL DESORPTION RESULTS 
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ABSTRACT 

We have Investigated the Interaction of hydrogen with Ru(lOO) using 

thermal desorptlon spectroscopy. Hydrogen desorbs from the clean surface 

In two states which appear at 189 and 332K at low exposures and move to 

lower temperatures as exposure Is Increased, finally appearing at 170 and 

269 K, respectively. A second-order desorptlon energy has been 

calculated by the method of Redhead for the lowest-exposure feature. A 

pre-exponentlal of 5 X 10"® cmV(H atoms s) and a desorptlon energy of 

42 kJ/mol are obtained. These results are compared to recently published 

results of Lauth and co-workers (1). 
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INTRODUCTION 

An understanding of the interactions of hydrogen with transition 

metal surfaces is Important for many reasons. In particular, these 

Interactions are of Interest in surface electrochemical and fusion 

studies. Our interest in studying the interactions of hydrogen with 

Ru(lOO) is to characterize its interactions alone so that comparison can 

be made when hydrogen is coadsorbed with water on this surface. There 

are numerous studies in the literature detailing the Interactions of 

hydrogen with Ru (l-i£). Most of these studies were carried out on the 

basal plane. 

Until recently, there were no published studies of the adsorption of 

hydrogen on the Ru(lOO) surface. However, Lauth and co-workers recently 

published a very thorough study of the adsorption of hydrogen on Ru(lOO), 

in which this system was studied using LEED, HREELS, TDS and work 

function measurements (1). We have studied this system using only 

thermal desorption spectroscopy, and our results are not In agreement 

with those of Lauth and co-workers. In this paper, we present our 

results, point out the discrepancies between our results and those of 

Lauth and co-workers, and finally present possible explanations for these 

discrepancies. 
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EXPERIMENTAL PROCEDURES 

The stainless steel chamber used In these experiments has a base 

pressure of 1 X 10'^" Torr, and Is equipped with a UTI lOOC mass 

spectrometer, a cylindrical mirror analyzer Auger spectrometer, an Ion 

gun, and an effusive-flow gas doser (12). The hydrogen used in these 

experiments, purchased from Matheson Gas Products, Is specified as 98% 

pure. The hydrogen Is introduced to the chamber via the effusive flow 

gas doser or a variable leak valve. The units of exposure for the doser 

are Torr-s, corresponding to the product of pressure in Torr behind the 

conductance-limiting aperture and the dose time. As a point of 

reference, a 4200 Torr-sec dose of hydrogen using this doser corresponds 

to approximately IL exposure achieved by backfilling the chamber. 

Between experiments, the sample is cleaned by annealing to 1695 K in 

vacuum to remove any oxygen that may adsorb when the sample is at 90 K. 

After this procedure, no oxygen is observable in the Auger spectrum. 

The sample is cooled to about 90 K prior to its exposure to hydrogen. 

A heating rate of approximately 10 K/sec is used to induce desorption. 

Typically, masses 2 and 28 are monitored. The mass 28 signal is recorded 

as a monitor of the amount of background gases coadsorbing with the 

hydrogen. In general, no mass 28 signal is observed. 
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EXPERIMENTAL RESULTS 

Two states are observed In the desorptlon of hydrogen from Ru(lOO). 

At low coverages, an assymetric peak appears at -332 K. This peak shifts 

down In temperature as exposure Is Increased, finally appearing at 269 K 

at high exposures. Assuming second-order desorptlon kinetics, and a pre-

exponentlal factor of -5 X 10'* cmV(H atoms s), and using the method of 

Redhead (Ig), a desorptlon energy of 42 kJ/mol is obtained at low 

coverages. 

The thermal desorptlon spectra are plotted In Fig. 1. The high and 

low temperature features are labelled and 7, respectively. The spectra 

in Fig. 1 are all obtained following hydrogen exposure via the effusive 

flow gas doser. 

Mass 2 area vs. hydrogen exposure is plotted in Fig. 2. At low 

exposures the area vs. exposure curve climbs rapidly. At approximately 

3800 torr sec (or about 0.9 L) this curve rolls over, and increases very 

slowly as exposure is further increased, indicating a marked change in 

sticking coefficient at this coverage. 
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Figure 1. Thermal desorptlon of various coverages of hydrogen from 
Ru(lOO) 
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coverages of hydrogen from Ru(lOO) 
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DISCUSSION 

The thermal desorption data presented 1n Fig. 1 differ significantly 

from those recently published by Lauth and co-workers (1). They observe 

a total of four hydrogen desorption features In this system. Initially, 

they observe one symmetrical state which appears at 385 K and shifts down 

to 350 K as coverage Increases. After exposures of about 0.25 L, a 

second weak desorption feature Is observed at about 287 K. This feature 

also shifts to lower temperatures as exposure Is Increased, Indicative of 

second-order desorption. A third peak, with somewhat more Intensity, 

grows In simultaneously with this 287 K feature. This third feature 

desorbs at about 258 K. At high exposures (2-6 L), a very intense fourth 

state grows in at 220 K. The peak temperature of this state does not 

shift with increasing exposure indicating first-order desorption 

kinetics. Using the method of Redhead (lg)> desorption energies were 

calculated for the high temperature and the low temperature states. 

Lauth and co-workers obtained a desorption energy of -80 kJ/mol with a 

pre-exponential of 9 X 10 cm^/(H atoms s) for the second-order high 

temperature state. A value of 50 kJ/mol is reported for the low 

temperature feature assuming a pre-exponential of 10^^ s"^ for first-order 

desorption. 

If one is willing to dismiss the two mid-temperature features in the 

data of Lauth and co-workers which are fairly weak in intensity as 

possible artifacts or as desorption from defect sites, the remaining two 

features can be compared to the features obtained in our desorption 
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spectra. These data seem to be at odds upon Initial Inspection. We 

obtained our pre-exponent1a1 value and desorptlon energy using a fitting 

routine (IS) to model the low-exposure chemisorption feature. The plot 

of the fitted data Is presented In Fig. 3. The pre-exponentlal of 5 X 

10'^ results In a deviation In the full width at half maximum between the 

experimental and the modelled peak of only 2%. The goodness of this fit 

Indicates that the values of v and Ey chosen for our data are reasonable. 

Using this fitting routine, we were unable to find a reasonable value for 

Ey for our experimental data using the pre-exponentlal value of 9 X 10"^ 

reported by Lauth and co-workers. However, we could vary the pre-

exponentlal over a range of four orders of magnitude (10*^-10'') with less 

than or equal to 20% error In the value of the full width at half 

maximum. 

Another point of contention between these two Investigations lies in 

the shape of the low-exposure desorptlon feature. We ovserve a much more 

asymmetric chemisorption peak than Lauth and co-workers. The asymmetry 

that we observe is typical for first-order desorptlon. The highly 

symmetric peak of Lauth and co-workers is more indicative of a second-

order desorptlon state. First-order desorptlon is physically 

unreasonable for this particular desorptlon state, though. Hydrogen 

dissociates upon adsorption on transition metal surfaces, particularly at 

low coverages. Recombinative desorptlon must then take place, making 

this desorptlon process necessarily second-order. 
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Both the desorption energy and the pre-exponent1a1 factor obtained 

by Lauth and co-workers are also typical for second-order desorption of 

hydrogen from transition metal surfaces. 

Typical values for Ey range from 40-120 kJ/mol and pre-exponentlals range 

from 10"^ to 10"^ cmV(H atoms s). Our desorption energy of 42 kJ/mol 

falls at the lower end of this range, and our pre-exponential factor of 

5 X 10'^ cmV(H atoms s) is smaller than those commonly reported for these 

systems. However, the pre-exponential factor we report is still within 

the realm of physical possibility for second-order desorption. 

Our pre-exponential value of 5 X 10'® indicates that hydrogen atoms 

have a longer surface lifetime in our experiments than in those of Lauth 

and co-workers. Perhaps this is reasonable considering the difference in 

the preparative techniques for the crystals in the two investigations. 

We anneal our sample to 1695 K for 3 minutes between experiments. At 

this temperature, one can certainly Imagine that many Ru atoms can move 

around in 3 minutes. Previously, we have discussed the possibility that 

terraces of both Ru(lOO) and Ru(OlO) exist on our surface (20). We 

expect that large terraces of Ru(lOO) and Ru(OlO) are formed during the 3 

minute anneals to 1695 K. This surface preparation should be compared to 

that of Lauth and co-workers. They never anneal their surface above 1200 

K. Therefore, one might conclude that the step density is much higher on 

their surface than it is on ours. This increased step density may 

explain the much larger pre-exponential value (and hence, shorter 

desorption times) they observe. Atoms prefer to adsorb at step sites, so 

if one assumes a mobile pre-cursor model for the adsorbate, the atoms are 
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expected to gather at the steps thereby making recombination and 

desorptlon a much faster process on a highly-stepped surface. But aside 

from the pre-exponentials, an energy difference still exists between 

these two systems. This too may be explained by the difference in the 

number of steps on the surface. The steps are the preferred binding 

sites because they are the most energetically favorable binding sites 

(i.e., the strongest chemisorption bonds can be formed there). 

Therefore, Lauth and co-workers should observe a higher binding energy 

for hydrogen than we do, and this is indeed the case. 

As an aside, apparently the reason that these investigators chose 

not to anneal their surface above 1200 K is because they believe that Ru 

undergoes a bulk phase transition at -1400 K (H). We find no evidence 

to support this phenomenon, though. In 1931, Jaeger and Rosenbohm 

reported transition points of Ruthenium at 1308, 1453, and 1773 K based 

on specific heat measurements (22). In 1957, Hall and Crangle 

contradicted the two low-temperature transition points based on powder 

diffraction results (23). And recently published phase diagrams for 

ruthenium Indicate that no phase transitions are observed (24, 25). 

Comparison of the low temperature states for this system is more 

complicated. Lauth and co-workers assign their low temperature state to 

a first-order desorptlon feature whereas our low temperature feature 

appears to exhibit second-order characteristics. The first-order 

behavior reported by Lauth and co-workers and the second-order behavior 

we observe are both physically reasonable. Both first-order and second-

order desorptlon states have been observed for desorptlon of high 
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coverages of hydrogen from transition metal surfaces. We have not 

modelled the high-exposure feature in our data as interaction energies 

become important at these coverages. However, based on rough 

calculations, we estimate that the desorption energy for the feature we 

observe is similar to the energy reported by Lauth and co-workers (50 

kJ/mol), but the pre-exponential value is obviously different by orders 

of magnitude since the desorption orders are different. 

Finally a comparison of area vs. exposure data is in order. A 

significant change in the sticking coefficient is observed in both 

studies. However, even the point at which this appears to occur is 

different in our study than it is in the work of Lauth and co-workers. 

By comparing Figs. 1 and 2, one can see that the sticking coefficient 

changes drastically in our system at a coverage of about 3800 Torr sec. 

This corresponds to a point at which the state is basically filled and 

the 7 state is partially filled. Lauth and co-workers observe this 

change in sticking coefficient before their high temperature desorption 

state is even filled! Perhaps this too is related to the difference in 

step density between the two surfaces. The change in the sticking 

coefficient in the data of Lauth and co-workers at such a low exposure 

may indicate that this change is occurring as soon as the step sites are 

filled, whereas this "roll-over" does not occur in our investigation 

until all of the surface sites are actually filled. 
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CONCLUSIONS 

We have studied the desorptlon of hydrogen from Ru(lOO). In this 

paper, we have reported the results of this Investigation along with 

results of a recently published study by Lauth, Schwarz and Chrlstmann. 

The differences In the results of these two studies have been highlighted 

and discussed In terms of possible differences In the surface structure 

which arise from differences In the preparative surface cleaning 

techniques. We suggest that the higher annealing temperature utilized in 

our investigation gives rise to larger terraces which allow different 

desorptlon kinetics than those that are observed by Lauth and co-workers. 

In general, we observe much smaller pre-exponential values and smaller 

desorptlon energies, indicating that hydrogen atoms must remain on our 

surface longer before recombination is accomplished, and that the 

adsorption sites available on our surface are less energetically 

favorable than those available on the Ru(lOO) surface of Lauth and co­

workers. All of these results can be explained in terms of an increased 

step density on the surface of Lauth and co-workers, and this increased 

step density is easily explained in terms of their low-temperature 

surface preparation. One can conclude from these observations that the 

adsorption of hydrogen on Ru is extremely sensitive to surface structure. 
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APPENDIX 4. 

ULTRA-HIGH VACUUM CHAMBER DESCRIPTION 
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INTRODUCTION 

A11 of the experiments discussed In this thesis were performed In a 

standard ultra-high vacuum chamber, which required assembly before 

experiments could be started. The chamber was designed by Dr. P. A. 

Thiel and constructed by Norcal Products, Inc., Yreka, CA. The chamber 

was fabricated out of 1/8" cross-forged, 300 series stainless steel, 

allowing a typical base pressure of 1 X 10'^° Torr. 

Table 1 describes the location and use of each of the ports In the 

top half of the chamber. The angle 9 describes the angle of each port 

with respect to the 8" view port located at the "front" of the chamber. 

Positive angles are taken clockwise from this port, and negative angles 

are counter clockwise. The angle # describes the angle of each port with 

respect to the focal plane of the chamber: positive angles for those 

ports above the focal plane and negative angles for those below. 

Figure 1 is a schematic of a top-view of the chamber. The dotted circle 

in the center of this drawing is the focal point circle. Along this 

focal point circle, there are several "clusters" of ports aimed at a 

particular point on the focal point circle. Figure 2 is a schematic of a 

side-view of the chamber. Note that a cluster of ports appears on the 

right side of this figure. The numbers that appear on the flanges in 

these figures correspond to the flange numbers in Table 1. 
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Table 1. Location and use of ports on the top half of the vacuum chamber 

Number F1 ange-
face to 
focal 
point 
distance 

Current 
use 

e 
Angle of 
focal 
point 

$ 
Angle with 
respect to 
focal 
plane 

F1ange 
outer 
diameter 

1 10.000" view port -75° 0° 8.000" 

2 

3 

8.000" 

8.000" 

electron 
gun 

Ion gauge 

-75» 

-75* 

30° 

-30° 

2.750" 

2.750" 

4 5.000" empty -37.5° 0° 4.500" 

5 4.000" view port 0° 0° 8.000" 

6 5.250" mass 
spectro­
meter 

60° 0° 4.500" 

7 4.500" view port 60° 45° 2.750" 

8 4.500" low 
pressure 
doser 

60° -45° 2.750" 

9 4.375" high 
pressure 
doser 

60° 0° 2.750" 

10 4.000" EELS 115° 0° 10.000" 

11 8.000" empty 115° -25° 2.750" 

12 10.000" view port 180° 30° 2.750" 

13 4.000" Auger 180° 0° 8.000" 

14 5.250" empty -90° 0° 4.500" 

15 4.500" view port -90° 45° 2.750" 

16 4.500" empty -90° -45° 2.750" 

17 4.375" ion gun -90° 0° 2.750" 
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Figure 1. Schematic of the top-view of the chamber 

The dotted line In the center represents the circle of focal 
points. The numbers on the flanges correspond to the flange 
numbers in Table 1. 
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u 
Q 

Figure 2. Schematic of a side-view of the chamber top 

Note that a cluster of ports appears on the right side 
of the figure. The numbers on the flanges 
correspond to the flange numbers in Table 1. 
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The bottom portion of the chamber connects to a11 of the pumps used 

In the chamber, as well as the leak valves used to backfill the chamber 

with low pressures of various gases. Figure 3 Is a top-view of the 

chamber basewell. Note that there are three large ports, ninety degrees 

from one another, and on the fourth side of the basewell there are 

several smaller ports. The main pumps for the chamber are installed on 

the three large ports of the basewell. Figures 4 and 5 are side views of 

the chamber basewell. Some of the small ports shown in Fig. 5 are inlets 

for various gases. In the following paragraphs, the location of various 

components in the vacuum system and their typical operating condition is 

discussed. 
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Figure 3. Top-view of the chamber basewell 
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Figure 4. Side-view of the chamber basewell 



www.manaraa.com

Il 

160 

Figure 5. Side-view of the chamber basewell showing the configuration of 
the small ports 
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CHAMBER TOP 

Spectrometers 

Mass Spectrometer 

The mass spectrometer Is located In port number 6. It is a UTI 

model lOOC quadrupole mass spectrometer with a mass range of 0-300 amu 

and an electron impact ionization source. The distance from the top of 

the ionizer of the mass spectrometer to the focal point circle of the 

chamber is 0.9375". Typically, the mass spectrometer is operated with an 

emission current of 2.00 mA and a multiplier voltage of -2200 V. 

Recently, this multiplier voltage was increased to 2340 V. However, all 

of the data included in this thesis was recorded with the multiplier 

voltage at the former value. The mass spectrometer has been modified 

after Johnson (1) to reduce the electron current at the sample surface 

from 10"® to 10'^^ A. This modification decreases the amount of electron 

stimulated desorption and decomposition at the sample surface. For all 

of the experimental data reported in this thesis, no spatially-limiting 

aperture was present at the front of the ionizer. The mass spectrometer 

is interfaced to an IBM-AT computer so that up to eight masses can be 

monitored essentially simultaneously for thermal desorption experiments. 

Electron Energy Loss Spectrometer 

The electron energy loss spectrometer (EELS) is a McAllister model 

PS200 spectrometer in the double-C configuration with angular resolution. 

It is located in port number 10, and the distance from the monochomator 

output to the focal point circle is 2.875". The EELS is enclosed in a n-
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metal shield shaped like a coffee can. The bottom of this "coffee can" 

can be opened to allow movement of samples into the focal point of the 

spectrometer. The spectrometer is typically operated with a beam current 

of 1.9 A and a beam energy of -4.9 V. These settings result in typical 

resolution of 10-12 meV and count rates of -1-200,000 cps. For further 

details on the EELS spectrometer see Ref. 2. 

Auger Spectrometer 

The Auger spectrometer is a PHI model 10-155 single pass cylindrical 

mirror analyzer (CMA). It is located In port number 13 with a distance 

of 3.25" from the end of the spectrometer to the focal point circle. 

Typical operating conditions for the Auger spectrometer are an emission 

current of 1.2 mA, a beam voltage of 2 kV, modulation voltage of 1 V 

peak-to-peak, and modulation frequency of -7 kHz. These conditions 

result in a resolution greater than 5%. 

Miscellaneous Components 

Ion Gun 

The ion gun is located in port number 17, with a filament-to-focal 

point distance of 0.6875". It is a home-made gun fabricated after the 

design of Bermudez and Thomas (1). The ion gun filament is constructed 

of 0.5 mil W wire, and the anode is fabricated from 10 mil Ta foil. 

Typically, the gun is operated with a filament current of 2.1 A and an 

accelerating voltage of 400 V. This results in an emission current at 

the sample surface of approximately 5 X 10"® A for 5 X 10"' Torr Ar 

pressure. 
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Ion Guaae 

The hot filament ion guage, located in port number 3 is a Varian 

model CVT 844. Typically, at a pressure of approximately 1 X 10"^° Torr, 

the grid voltage is -184 V, the ion collector current has a value of 

-3.68 X 10'^ A, and the emission current is -4.4 X 10'^ A. The gauge is 

calibrated by electronically supplying a simulated ion collector current 

to the controller. 

Electron Gun 

A Cliftronics model CE406W electron gun is located in port number 2. 

This gun is currently not in use. 

Posers 

One collimated molecular beam gas doser is located in port number 9. 

This doser was used for all of the experiments reported in this thesis. 

The end of this doser is located 1.125" from the focal point. The doser 

consists of a 2 M conductance-limiting aperture followed by a 0.5 mm 

directional aperture. Exposures reported through this doser are defined 

in Torr s corresponding to the product of pressure behind the 

conductance-limiting aperture and the dose time. Typical pressures 

behind the conductance-limiting aperture for dose times of about 50 s are 

3 to 20 Torr. A schematic of this doser is shown in Fig. 6. 

Originally, this particular doser was designed with a microcapillary 

array instead of the 0.5 mm aperture at the front of the doser. However, 

we suspect that this silica microcapillary array induced decomposition of 

the perfluorinated ether, so it was replaced with the stainless steel 

aperture. See Appendix 1 for more details. 
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A second gas doser is located in port number 8. This doser is also 

located approximately 1" from the focal point, but this doser is located 

about 0.25" above the plane of focal points as well. So the sample must 

be raised from the focal point circle to access this doser. Since this 

gas doser is designed to be used with much lower pressures behind it 

(-10 mTorr range), a much larger conductance-limiting aperture can be 

used (20 n). Finally, a 0.5 mm directional aperture is again utilized at 

the end of the doser. 

Others 

All other ports in the top half of the chamber are either currently 

blanked off or they contain view ports as indicated in Table 1. 
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CHAMBER BASEWELL 

Pumps 

Ipn Pmitip 

The Ion pump Is located -90» from the front of the chamber. It 1s a 

Varian 110 L/sec triode Ion pump. 

Titanium Sublimation Pump 

The titanium sublimation pump (tsp) is located 180* from the front 

of the chamber. It is a Varian model 0017 tsp cartridge which is 

enclosed in a liquid-nitrogen-coolable shroud. 

Turbo Molecular Pump 

The turbo molecular pump Is located 90» from the front of the 

chamber. It is a Balzar's model TCP300 with a pumping speed of 

330 L/sec. 

Valves 

There are three Varian model 5106 variable leak valves located on 

the front of the chamber basewell, on the top three small ports pictured 

in Fig. 5. These valves are used to back-fill the chamber with various 

gases. 
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Others 

The other ports located on the front of the basewell are either 

empty or they contain valves necessary for venting the chamber or pumping 

it down. 
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